Cargando…
2D Ag Ion-Loaded Anionic Nanosheets for Polymer-Based Film with Durable Antibacterial Activities
[Image: see text] Silver (Ag) has been demonstrated to have excellent performance to kill bacteria, fungi, and some viruses because it can release positively charged Ag ions with highly antibacterial and antifungal activities. However, effectively controlling the slow release of Ag ions is the key t...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9520686/ https://www.ncbi.nlm.nih.gov/pubmed/36188310 http://dx.doi.org/10.1021/acsomega.2c02718 |
Sumario: | [Image: see text] Silver (Ag) has been demonstrated to have excellent performance to kill bacteria, fungi, and some viruses because it can release positively charged Ag ions with highly antibacterial and antifungal activities. However, effectively controlling the slow release of Ag ions is the key to preparing high-performance Ag-based antibacterial agents, which remains a challenge. In this work, we have developed a new Ag-based antibacterial agent composed of Ag ions loaded on 2D anionic 2D Sb(3)P(2)O(14)(3–) nanosheets (denoted as Ag-Sb(3)P(2)O(14)). 2D anionic nanosheets not only adsorb a large amount of Ag ions but also control their slow release through electrostatic interaction between nanosheets and Ag ions. 2D Ag-Sb(3)P(2)O(14) nanofillers enable excellent high antibacterial activities for the poly(vinylidene fluoride) (PVDF) film composites against microorganisms including Escherichia coli and Staphylococcus aureus. Moreover, the PVDF membrane with 5 wt % 2D Ag-Sb(3)P(2)O(14) nanofillers can kill almost all bacterial after 50 times washing, demonstrating its excellent durable antibacterial activities. This work opens up a new and promising route to durable Ag-based antibacterial agents for polymer-based composites. |
---|