Cargando…
Visible Light-Promoted Green and Sustainable Approach for One-Pot Synthesis of 4,4’-(Arylmethylene)bis(1H-pyrazol-5-ols), In Vitro Anticancer Activity, and Molecular Docking with Covid-19 M(pro)
[Image: see text] A visible light-promoted, efficient, green, and sustainable strategy has been adopted to unlatch a new pathway toward the synthesis of a library of medicinally important 4,4′-(arylmethylene)bis(1H-pyrazol-5-ols) moieties using substituted aromatic aldehydes and sterically hindered...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9520760/ https://www.ncbi.nlm.nih.gov/pubmed/36188265 http://dx.doi.org/10.1021/acsomega.2c04506 |
_version_ | 1784799697342300160 |
---|---|
author | Gupta, Anamika Iqbal, Safia Roohi, Hussain, Mohd. Kamil Zaheer, Mohd. Rehan Shankar, Krapa |
author_facet | Gupta, Anamika Iqbal, Safia Roohi, Hussain, Mohd. Kamil Zaheer, Mohd. Rehan Shankar, Krapa |
author_sort | Gupta, Anamika |
collection | PubMed |
description | [Image: see text] A visible light-promoted, efficient, green, and sustainable strategy has been adopted to unlatch a new pathway toward the synthesis of a library of medicinally important 4,4′-(arylmethylene)bis(1H-pyrazol-5-ols) moieties using substituted aromatic aldehydes and sterically hindered 3-methyl-1-phenyl-2-pyrazoline-5-one in excellent yield. This reaction shows high functional group tolerance and provides a cost-effective and catalyst-free protocol for the quick synthesis of biologically active compounds from readily available substrates. Synthesized compounds were characterized by spectroscopic techniques such as IR, (1)HNMR, (13)CNMR, and single-crystal XRD analysis. All the synthesized compounds were evaluated for their antiproliferative activities against a panel of five different human cancer cell lines and compared with Tamoxifen using MTT assay. Compound 3m exhibited maximum antiproliferative activity and was found to be more active as compared to Tamoxifen against both the MCF-7 and MDA-MB-231 cell lines with an IC(50) of 5.45 and 9.47 μM, respectively. A molecular docking study with respect to COVID-19 main protease (M(pro)) (PDB ID: 6LU7) has also been carried out which shows comparatively high binding affinity of compounds 3f and 3g (−8.3 and −8.8 Kcal/mole, respectively) than few reported drugs such as ritonavir, remdesivir, ribacvirin, favipiravir, hydroxychloroquine, chloroquine, and olsaltamivir. Hence, it reveals the possibility of these compounds to be used as effective COVID-19 inhibitors. |
format | Online Article Text |
id | pubmed-9520760 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-95207602022-09-30 Visible Light-Promoted Green and Sustainable Approach for One-Pot Synthesis of 4,4’-(Arylmethylene)bis(1H-pyrazol-5-ols), In Vitro Anticancer Activity, and Molecular Docking with Covid-19 M(pro) Gupta, Anamika Iqbal, Safia Roohi, Hussain, Mohd. Kamil Zaheer, Mohd. Rehan Shankar, Krapa ACS Omega [Image: see text] A visible light-promoted, efficient, green, and sustainable strategy has been adopted to unlatch a new pathway toward the synthesis of a library of medicinally important 4,4′-(arylmethylene)bis(1H-pyrazol-5-ols) moieties using substituted aromatic aldehydes and sterically hindered 3-methyl-1-phenyl-2-pyrazoline-5-one in excellent yield. This reaction shows high functional group tolerance and provides a cost-effective and catalyst-free protocol for the quick synthesis of biologically active compounds from readily available substrates. Synthesized compounds were characterized by spectroscopic techniques such as IR, (1)HNMR, (13)CNMR, and single-crystal XRD analysis. All the synthesized compounds were evaluated for their antiproliferative activities against a panel of five different human cancer cell lines and compared with Tamoxifen using MTT assay. Compound 3m exhibited maximum antiproliferative activity and was found to be more active as compared to Tamoxifen against both the MCF-7 and MDA-MB-231 cell lines with an IC(50) of 5.45 and 9.47 μM, respectively. A molecular docking study with respect to COVID-19 main protease (M(pro)) (PDB ID: 6LU7) has also been carried out which shows comparatively high binding affinity of compounds 3f and 3g (−8.3 and −8.8 Kcal/mole, respectively) than few reported drugs such as ritonavir, remdesivir, ribacvirin, favipiravir, hydroxychloroquine, chloroquine, and olsaltamivir. Hence, it reveals the possibility of these compounds to be used as effective COVID-19 inhibitors. American Chemical Society 2022-09-14 /pmc/articles/PMC9520760/ /pubmed/36188265 http://dx.doi.org/10.1021/acsomega.2c04506 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Gupta, Anamika Iqbal, Safia Roohi, Hussain, Mohd. Kamil Zaheer, Mohd. Rehan Shankar, Krapa Visible Light-Promoted Green and Sustainable Approach for One-Pot Synthesis of 4,4’-(Arylmethylene)bis(1H-pyrazol-5-ols), In Vitro Anticancer Activity, and Molecular Docking with Covid-19 M(pro) |
title | Visible Light-Promoted Green and Sustainable Approach
for One-Pot Synthesis of 4,4’-(Arylmethylene)bis(1H-pyrazol-5-ols),
In Vitro Anticancer Activity, and Molecular Docking with Covid-19
M(pro) |
title_full | Visible Light-Promoted Green and Sustainable Approach
for One-Pot Synthesis of 4,4’-(Arylmethylene)bis(1H-pyrazol-5-ols),
In Vitro Anticancer Activity, and Molecular Docking with Covid-19
M(pro) |
title_fullStr | Visible Light-Promoted Green and Sustainable Approach
for One-Pot Synthesis of 4,4’-(Arylmethylene)bis(1H-pyrazol-5-ols),
In Vitro Anticancer Activity, and Molecular Docking with Covid-19
M(pro) |
title_full_unstemmed | Visible Light-Promoted Green and Sustainable Approach
for One-Pot Synthesis of 4,4’-(Arylmethylene)bis(1H-pyrazol-5-ols),
In Vitro Anticancer Activity, and Molecular Docking with Covid-19
M(pro) |
title_short | Visible Light-Promoted Green and Sustainable Approach
for One-Pot Synthesis of 4,4’-(Arylmethylene)bis(1H-pyrazol-5-ols),
In Vitro Anticancer Activity, and Molecular Docking with Covid-19
M(pro) |
title_sort | visible light-promoted green and sustainable approach
for one-pot synthesis of 4,4’-(arylmethylene)bis(1h-pyrazol-5-ols),
in vitro anticancer activity, and molecular docking with covid-19
m(pro) |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9520760/ https://www.ncbi.nlm.nih.gov/pubmed/36188265 http://dx.doi.org/10.1021/acsomega.2c04506 |
work_keys_str_mv | AT guptaanamika visiblelightpromotedgreenandsustainableapproachforonepotsynthesisof44arylmethylenebis1hpyrazol5olsinvitroanticanceractivityandmoleculardockingwithcovid19mpro AT iqbalsafia visiblelightpromotedgreenandsustainableapproachforonepotsynthesisof44arylmethylenebis1hpyrazol5olsinvitroanticanceractivityandmoleculardockingwithcovid19mpro AT roohi visiblelightpromotedgreenandsustainableapproachforonepotsynthesisof44arylmethylenebis1hpyrazol5olsinvitroanticanceractivityandmoleculardockingwithcovid19mpro AT hussainmohdkamil visiblelightpromotedgreenandsustainableapproachforonepotsynthesisof44arylmethylenebis1hpyrazol5olsinvitroanticanceractivityandmoleculardockingwithcovid19mpro AT zaheermohdrehan visiblelightpromotedgreenandsustainableapproachforonepotsynthesisof44arylmethylenebis1hpyrazol5olsinvitroanticanceractivityandmoleculardockingwithcovid19mpro AT shankarkrapa visiblelightpromotedgreenandsustainableapproachforonepotsynthesisof44arylmethylenebis1hpyrazol5olsinvitroanticanceractivityandmoleculardockingwithcovid19mpro |