Cargando…

Hyperosmolar expansion medium improves nucleus pulposus cell phenotype

BACKGROUND: Repopulating the degenerated intervertebral disc (IVD) with tissue‐specific nucleus pulposus cells (NPCs) has already been shown to promote regeneration in various species. Yet the applicability of NPCs as cell‐based therapy has been hampered by the low cell numbers that can be extracted...

Descripción completa

Detalles Bibliográficos
Autores principales: Laagland, Lisanne T., Bach, Frances C., Creemers, Laura B., Le Maitre, Christine L., Poramba‐Liyanage, Deepani W., Tryfonidou, Marianna A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9520765/
https://www.ncbi.nlm.nih.gov/pubmed/36203869
http://dx.doi.org/10.1002/jsp2.1219
_version_ 1784799698610028544
author Laagland, Lisanne T.
Bach, Frances C.
Creemers, Laura B.
Le Maitre, Christine L.
Poramba‐Liyanage, Deepani W.
Tryfonidou, Marianna A.
author_facet Laagland, Lisanne T.
Bach, Frances C.
Creemers, Laura B.
Le Maitre, Christine L.
Poramba‐Liyanage, Deepani W.
Tryfonidou, Marianna A.
author_sort Laagland, Lisanne T.
collection PubMed
description BACKGROUND: Repopulating the degenerated intervertebral disc (IVD) with tissue‐specific nucleus pulposus cells (NPCs) has already been shown to promote regeneration in various species. Yet the applicability of NPCs as cell‐based therapy has been hampered by the low cell numbers that can be extracted from donor IVDs and their potentially limited regenerative capacity due to their degenerated phenotype. To optimize the expansion conditions, we investigated the effects of increasing culture medium osmolarity during expansion on the phenotype of dog NPCs and their ability to produce a healthy extracellular matrix (ECM) in a 3D culture model. METHODS: Dog NPCs were expanded in expansion medium with a standard osmolarity of 300 mOsm/L or adjusted to 400 or 500 mOsm/L in both normoxic and hypoxic conditions. Following expansion, NPCs were cultured in a 3D culture model in chondrogenic culture medium with a standard osmolarity. Read‐out parameters included cell proliferaton rate, morphology, phenotype and healthy ECM production. RESULTS: Increasing the expansion medium osmolarity from 300 to 500 mOsm/L resulted in NPCs with a more rounded morphology and a lower cell proliferation rate accompanied by the expression of several healthy NPC and progenitor markers at gene (KRT18, ACAN, COL2, CD73, CD90) and protein (ACAN, PAX1, CD24, TEK, CD73) level. The NPCs expanded at 500 mOsm/L were able to retain most of their phenotypic markers and produce healthy ECM during 3D culture independent of the oxygen level used during expansion. CONCLUSIONS: Altogether, our findings show that increasing medium osmolarity during expansion results in an NPC population with improved phenotype, which could enhance the potential of cell‐based therapies for IVD regeneration.
format Online
Article
Text
id pubmed-9520765
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-95207652022-10-05 Hyperosmolar expansion medium improves nucleus pulposus cell phenotype Laagland, Lisanne T. Bach, Frances C. Creemers, Laura B. Le Maitre, Christine L. Poramba‐Liyanage, Deepani W. Tryfonidou, Marianna A. JOR Spine Research Articles BACKGROUND: Repopulating the degenerated intervertebral disc (IVD) with tissue‐specific nucleus pulposus cells (NPCs) has already been shown to promote regeneration in various species. Yet the applicability of NPCs as cell‐based therapy has been hampered by the low cell numbers that can be extracted from donor IVDs and their potentially limited regenerative capacity due to their degenerated phenotype. To optimize the expansion conditions, we investigated the effects of increasing culture medium osmolarity during expansion on the phenotype of dog NPCs and their ability to produce a healthy extracellular matrix (ECM) in a 3D culture model. METHODS: Dog NPCs were expanded in expansion medium with a standard osmolarity of 300 mOsm/L or adjusted to 400 or 500 mOsm/L in both normoxic and hypoxic conditions. Following expansion, NPCs were cultured in a 3D culture model in chondrogenic culture medium with a standard osmolarity. Read‐out parameters included cell proliferaton rate, morphology, phenotype and healthy ECM production. RESULTS: Increasing the expansion medium osmolarity from 300 to 500 mOsm/L resulted in NPCs with a more rounded morphology and a lower cell proliferation rate accompanied by the expression of several healthy NPC and progenitor markers at gene (KRT18, ACAN, COL2, CD73, CD90) and protein (ACAN, PAX1, CD24, TEK, CD73) level. The NPCs expanded at 500 mOsm/L were able to retain most of their phenotypic markers and produce healthy ECM during 3D culture independent of the oxygen level used during expansion. CONCLUSIONS: Altogether, our findings show that increasing medium osmolarity during expansion results in an NPC population with improved phenotype, which could enhance the potential of cell‐based therapies for IVD regeneration. John Wiley & Sons, Inc. 2022-08-18 /pmc/articles/PMC9520765/ /pubmed/36203869 http://dx.doi.org/10.1002/jsp2.1219 Text en © 2022 The Authors. JOR Spine published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Research Articles
Laagland, Lisanne T.
Bach, Frances C.
Creemers, Laura B.
Le Maitre, Christine L.
Poramba‐Liyanage, Deepani W.
Tryfonidou, Marianna A.
Hyperosmolar expansion medium improves nucleus pulposus cell phenotype
title Hyperosmolar expansion medium improves nucleus pulposus cell phenotype
title_full Hyperosmolar expansion medium improves nucleus pulposus cell phenotype
title_fullStr Hyperosmolar expansion medium improves nucleus pulposus cell phenotype
title_full_unstemmed Hyperosmolar expansion medium improves nucleus pulposus cell phenotype
title_short Hyperosmolar expansion medium improves nucleus pulposus cell phenotype
title_sort hyperosmolar expansion medium improves nucleus pulposus cell phenotype
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9520765/
https://www.ncbi.nlm.nih.gov/pubmed/36203869
http://dx.doi.org/10.1002/jsp2.1219
work_keys_str_mv AT laaglandlisannet hyperosmolarexpansionmediumimprovesnucleuspulposuscellphenotype
AT bachfrancesc hyperosmolarexpansionmediumimprovesnucleuspulposuscellphenotype
AT creemerslaurab hyperosmolarexpansionmediumimprovesnucleuspulposuscellphenotype
AT lemaitrechristinel hyperosmolarexpansionmediumimprovesnucleuspulposuscellphenotype
AT porambaliyanagedeepaniw hyperosmolarexpansionmediumimprovesnucleuspulposuscellphenotype
AT tryfonidoumariannaa hyperosmolarexpansionmediumimprovesnucleuspulposuscellphenotype