Cargando…
Identifying health related occupations of Twitter users through word embedding and deep neural networks
BACKGROUND: Twitter is a popular social networking site where short messages or “tweets” of users have been used extensively for research purposes. However, not much research has been done in mining the medical professions, such as detecting the occupations of users from their biographical contents....
Autores principales: | Zainab, Kazi, Srivastava, Gautam, Mago, Vijay |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9520792/ https://www.ncbi.nlm.nih.gov/pubmed/36171569 http://dx.doi.org/10.1186/s12859-022-04933-2 |
Ejemplares similares
-
Identifying antimicrobial peptides using word embedding with deep recurrent neural networks
por: Hamid, Md-Nafiz, et al.
Publicado: (2019) -
Utilizing deep learning and graph mining to identify drug use on Twitter data
por: Tassone, Joseph, et al.
Publicado: (2020) -
Identifying tweets of personal health experience through word embedding and LSTM neural network
por: Jiang, Keyuan, et al.
Publicado: (2018) -
Deep Neural Network Framework Based on Word Embedding for Protein Glutarylation Sites Prediction
por: Liu, Chuan-Ming, et al.
Publicado: (2022) -
Modular networks of word correlations on Twitter
por: Mathiesen, Joachim, et al.
Publicado: (2012)