Cargando…
A novel hybrid framework for metabolic pathways prediction based on the graph attention network
BACKGROUND: Making clear what kinds of metabolic pathways a drug compound involves in can help researchers understand how the drug is absorbed, distributed, metabolized, and excreted. The characteristics of a compound such as structure, composition and so on directly determine the metabolic pathways...
Autores principales: | Yang, Zhihui, Liu, Juan, Shah, Hayat Ali, Feng, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9520805/ https://www.ncbi.nlm.nih.gov/pubmed/36171550 http://dx.doi.org/10.1186/s12859-022-04856-y |
Ejemplares similares
-
Review of Machine Learning Methods for the Prediction and Reconstruction of Metabolic Pathways
por: Shah, Hayat Ali, et al.
Publicado: (2021) -
An efficient scRNA-seq dropout imputation method using graph attention network
por: Xu, Chenyang, et al.
Publicado: (2021) -
Predicting functions of maize proteins using graph convolutional network
por: Zhou, Guangjie, et al.
Publicado: (2020) -
Predicting combinations of drugs by exploiting graph embedding of heterogeneous networks
por: Song, Fei, et al.
Publicado: (2022) -
Hybrid attentional memory network for computational drug repositioning
por: He, Jieyue, et al.
Publicado: (2020)