Cargando…

Effects of Molecular Encapsulation on the Photophysical and Charge Transport Properties of a Naphthalene Diimide Bithiophene Copolymer

[Image: see text] Engineering the molecular structure of conjugated polymers is key to advancing the field of organic electronics. In this work, we synthesized a molecularly encapsulated version of the naphthalene diimide bithiophene copolymer PNDIT2, which is among the most popular high charge mobi...

Descripción completa

Detalles Bibliográficos
Autores principales: Pecorario, Stefano, Royakkers, Jeroen, Scaccabarozzi, Alberto D., Pallini, Francesca, Beverina, Luca, Bronstein, Hugo, Caironi, Mario
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9520976/
https://www.ncbi.nlm.nih.gov/pubmed/36186667
http://dx.doi.org/10.1021/acs.chemmater.2c01894
_version_ 1784799744817627136
author Pecorario, Stefano
Royakkers, Jeroen
Scaccabarozzi, Alberto D.
Pallini, Francesca
Beverina, Luca
Bronstein, Hugo
Caironi, Mario
author_facet Pecorario, Stefano
Royakkers, Jeroen
Scaccabarozzi, Alberto D.
Pallini, Francesca
Beverina, Luca
Bronstein, Hugo
Caironi, Mario
author_sort Pecorario, Stefano
collection PubMed
description [Image: see text] Engineering the molecular structure of conjugated polymers is key to advancing the field of organic electronics. In this work, we synthesized a molecularly encapsulated version of the naphthalene diimide bithiophene copolymer PNDIT2, which is among the most popular high charge mobility organic semiconductors in n-type field-effect transistors and non-fullerene acceptors in organic photovoltaic blends. The encapsulating macrocycles shield the bithiophene units while leaving the naphthalene diimide units available for intermolecular interactions. With respect to PNDIT2, the encapsulated counterpart displays an increased backbone planarity. Molecular encapsulation prevents preaggregation of the polymer chains in common organic solvents, while it permits π-stacking in the solid state and promotes thin film crystallinity through an intermolecular-lock mechanism. Consequently, n-type semiconducting behavior is retained in field-effect transistors, although charge mobility is lower than in PNDIT2 due to the absence of the fibrillar microstructure that originates from preaggregation in solution. Hence, molecularly encapsulating conjugated polymers represent a promising chemical strategy to tune the molecular interaction in solution and the backbone conformation and to consequently control the nanomorphology of casted films without altering the electronic structure of the core polymer.
format Online
Article
Text
id pubmed-9520976
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-95209762022-09-30 Effects of Molecular Encapsulation on the Photophysical and Charge Transport Properties of a Naphthalene Diimide Bithiophene Copolymer Pecorario, Stefano Royakkers, Jeroen Scaccabarozzi, Alberto D. Pallini, Francesca Beverina, Luca Bronstein, Hugo Caironi, Mario Chem Mater [Image: see text] Engineering the molecular structure of conjugated polymers is key to advancing the field of organic electronics. In this work, we synthesized a molecularly encapsulated version of the naphthalene diimide bithiophene copolymer PNDIT2, which is among the most popular high charge mobility organic semiconductors in n-type field-effect transistors and non-fullerene acceptors in organic photovoltaic blends. The encapsulating macrocycles shield the bithiophene units while leaving the naphthalene diimide units available for intermolecular interactions. With respect to PNDIT2, the encapsulated counterpart displays an increased backbone planarity. Molecular encapsulation prevents preaggregation of the polymer chains in common organic solvents, while it permits π-stacking in the solid state and promotes thin film crystallinity through an intermolecular-lock mechanism. Consequently, n-type semiconducting behavior is retained in field-effect transistors, although charge mobility is lower than in PNDIT2 due to the absence of the fibrillar microstructure that originates from preaggregation in solution. Hence, molecularly encapsulating conjugated polymers represent a promising chemical strategy to tune the molecular interaction in solution and the backbone conformation and to consequently control the nanomorphology of casted films without altering the electronic structure of the core polymer. American Chemical Society 2022-09-05 2022-09-27 /pmc/articles/PMC9520976/ /pubmed/36186667 http://dx.doi.org/10.1021/acs.chemmater.2c01894 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Pecorario, Stefano
Royakkers, Jeroen
Scaccabarozzi, Alberto D.
Pallini, Francesca
Beverina, Luca
Bronstein, Hugo
Caironi, Mario
Effects of Molecular Encapsulation on the Photophysical and Charge Transport Properties of a Naphthalene Diimide Bithiophene Copolymer
title Effects of Molecular Encapsulation on the Photophysical and Charge Transport Properties of a Naphthalene Diimide Bithiophene Copolymer
title_full Effects of Molecular Encapsulation on the Photophysical and Charge Transport Properties of a Naphthalene Diimide Bithiophene Copolymer
title_fullStr Effects of Molecular Encapsulation on the Photophysical and Charge Transport Properties of a Naphthalene Diimide Bithiophene Copolymer
title_full_unstemmed Effects of Molecular Encapsulation on the Photophysical and Charge Transport Properties of a Naphthalene Diimide Bithiophene Copolymer
title_short Effects of Molecular Encapsulation on the Photophysical and Charge Transport Properties of a Naphthalene Diimide Bithiophene Copolymer
title_sort effects of molecular encapsulation on the photophysical and charge transport properties of a naphthalene diimide bithiophene copolymer
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9520976/
https://www.ncbi.nlm.nih.gov/pubmed/36186667
http://dx.doi.org/10.1021/acs.chemmater.2c01894
work_keys_str_mv AT pecorariostefano effectsofmolecularencapsulationonthephotophysicalandchargetransportpropertiesofanaphthalenediimidebithiophenecopolymer
AT royakkersjeroen effectsofmolecularencapsulationonthephotophysicalandchargetransportpropertiesofanaphthalenediimidebithiophenecopolymer
AT scaccabarozzialbertod effectsofmolecularencapsulationonthephotophysicalandchargetransportpropertiesofanaphthalenediimidebithiophenecopolymer
AT pallinifrancesca effectsofmolecularencapsulationonthephotophysicalandchargetransportpropertiesofanaphthalenediimidebithiophenecopolymer
AT beverinaluca effectsofmolecularencapsulationonthephotophysicalandchargetransportpropertiesofanaphthalenediimidebithiophenecopolymer
AT bronsteinhugo effectsofmolecularencapsulationonthephotophysicalandchargetransportpropertiesofanaphthalenediimidebithiophenecopolymer
AT caironimario effectsofmolecularencapsulationonthephotophysicalandchargetransportpropertiesofanaphthalenediimidebithiophenecopolymer