Cargando…
Applications and Challenges of Machine Learning to Enable Realistic Cellular Simulations
In this perspective, we examine three key aspects of an end-to-end pipeline for realistic cellular simulations: reconstruction and segmentation of cellular structures; generation of cellular structures; and mesh generation, simulation, and data analysis. We highlight some of the relevant prior work...
Autores principales: | Vasan, Ritvik, Rowan, Meagan P., Lee, Christopher T., Johnson, Gregory R., Rangamani, Padmini, Holst, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9521042/ https://www.ncbi.nlm.nih.gov/pubmed/36188416 http://dx.doi.org/10.3389/fphy.2019.00247 |
Ejemplares similares
-
3D mesh processing using GAMer 2 to enable reaction-diffusion simulations in realistic cellular geometries
por: Lee, Christopher T., et al.
Publicado: (2020) -
An Open-Source Mesh Generation Platform for Biophysical Modeling Using Realistic Cellular Geometries
por: Lee, Christopher T., et al.
Publicado: (2020) -
DLITE Uses Cell-Cell Interface Movement to Better Infer Cell-Cell Tensions
por: Vasan, Ritvik, et al.
Publicado: (2019) -
Principles of self-organization and load adaptation by the actin cytoskeleton during clathrin-mediated endocytosis
por: Akamatsu, Matthew, et al.
Publicado: (2020) -
Biomembranes undergo complex, non-axisymmetric deformations governed by Kirchhoff–Love kinematicsand revealed by a three-dimensional computational framework
por: Auddya, Debabrata, et al.
Publicado: (2021)