Cargando…
An engineered concealed IL-15-R elicits tumor-specific CD8(+)T cell responses through PD-1-cis delivery
Checkpoint blockade immunotherapy releases the inhibition of tumor-infiltrating lymphocytes (TILs) but weakly induces TIL proliferation. Exogenous IL-15 could further expand TILs and thus synergize with αPD-L1 therapy. However, systemic delivery of IL-15 extensively expands peripheral NK cells, caus...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9521244/ https://www.ncbi.nlm.nih.gov/pubmed/36165896 http://dx.doi.org/10.1084/jem.20220745 |
Sumario: | Checkpoint blockade immunotherapy releases the inhibition of tumor-infiltrating lymphocytes (TILs) but weakly induces TIL proliferation. Exogenous IL-15 could further expand TILs and thus synergize with αPD-L1 therapy. However, systemic delivery of IL-15 extensively expands peripheral NK cells, causing severe toxicity. To redirect IL-15 to intratumoral PD-1(+)CD8(+)T effector cells instead of NK cells for better tumor control and lower toxicity, we engineered an anti–PD-1 fusion with IL-15-IL-15Rα, whose activity was geographically concealed by immunoglobulin Fc region with an engineered linker (αPD-1-IL-15-R) to bypass systemic NK cells. Systematic administration of αPD-1-IL-15-R elicited extraordinary antitumor efficacy with undetectable toxicity. Mechanistically, cis-delivery of αPD-1-IL-15-R vastly expands tumor-specific CD8(+)T cells for tumor rejection. Additionally, αPD-1-IL-15-R upregulated PD-1 and IL-15Rβ on T cells to create a feedforward activation loop, thus rejuvenating TILs, not only resulting in tumor control in situ, but also suppressing tumor metastasis. Collectively, renavigating IL-15 to tumor-specific PD-1(+)CD8(+)T cells, αPD-1-IL-15-R elicits effective systemic antitumor immunity. |
---|