Cargando…
Ensemble learning via supervision augmentation for white matter hyperintensity segmentation
Since the ambiguous boundary of the lesion and inter-observer variability, white matter hyperintensity segmentation annotations are inherently noisy and uncertain. On the other hand, the high capacity of deep neural networks (DNN) enables them to overfit labels with noise and uncertainty, which may...
Autores principales: | Guo, Xutao, Ye, Chenfei, Yang, Yanwu, Zhang, Li, Liang, Li, Lu, Shang, Lv, Haiyan, Guo, Chunjie, Ma, Ting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9521379/ https://www.ncbi.nlm.nih.gov/pubmed/36188477 http://dx.doi.org/10.3389/fnins.2022.946343 |
Ejemplares similares
-
White matter hyperintensities segmentation using an ensemble of neural networks
por: Li, Xinxin, et al.
Publicado: (2021) -
MRF-Net: A multi-branch residual fusion network for fast and accurate whole-brain MRI segmentation
por: Wei, Chong, et al.
Publicado: (2022) -
Triplanar ensemble U-Net model for white matter hyperintensities segmentation on MR images
por: Sundaresan, Vaanathi, et al.
Publicado: (2021) -
White matter hyperintensities segmentation using the ensemble U-Net with multi-scale highlighting foregrounds
por: Park, Gilsoon, et al.
Publicado: (2021) -
Validation of Automated White Matter Hyperintensity Segmentation
por: Smart, Sean D., et al.
Publicado: (2011)