Cargando…
Applications of graph theory to the analysis of fNIRS data in hyperscanning paradigms
Hyperscanning is a promising tool for investigating the neurobiological underpinning of social interactions and affective bonds. Recently, graph theory measures, such as modularity, have been proposed for estimating the global synchronization between brains. This paper proposes the bootstrap modular...
Autores principales: | Oku, Amanda Yumi Ambriola, Barreto, Candida, Bruneri, Guilherme, Brockington, Guilherme, Fujita, Andre, Sato, João Ricardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9521601/ https://www.ncbi.nlm.nih.gov/pubmed/36185711 http://dx.doi.org/10.3389/fncom.2022.975743 |
Ejemplares similares
-
A New Statistical Approach for fNIRS Hyperscanning to Predict Brain Activity of Preschoolers’ Using Teacher’s
por: Barreto, Candida, et al.
Publicado: (2021) -
Predicting Student Performance Using Machine Learning in fNIRS Data
por: Oku, Amanda Yumi Ambriola, et al.
Publicado: (2021) -
Hyperscanning fNIRS data analysis using multiregression dynamic models: an illustration in a violin duo
por: do Nascimento, Diego Carvalho, et al.
Publicado: (2023) -
Sex differences in neural and behavioral signatures of cooperation revealed by fNIRS hyperscanning
por: Baker, Joseph M., et al.
Publicado: (2016) -
Interbrain Synchrony of Team Collaborative Decision-Making: An fNIRS Hyperscanning Study
por: Zhang, Mingming, et al.
Publicado: (2021)