Cargando…
Integrative analysis of chemical properties and functions of drugs for adverse drug reaction prediction based on multi-label deep neural network
The prediction of adverse drug reactions (ADR) is an important step of drug discovery and design process. Different drug properties have been employed for ADR prediction but the prediction capability of drug properties and drug functions in integrated manner is yet to be explored. In the present wor...
Autores principales: | Das, Pranab, Yogita, Pal, Vipin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
De Gruyter
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9521819/ https://www.ncbi.nlm.nih.gov/pubmed/35585715 http://dx.doi.org/10.1515/jib-2022-0007 |
Ejemplares similares
-
Comment on: “Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts”
por: Magge, Arjun, et al.
Publicado: (2019) -
Exhibition by the Drug, Chemical, and Allied Trades
Publicado: (1895) -
Deep Convolutional Neural Networks for the Prediction of Molecular Properties: Challenges and Opportunities Connected to the Data
por: Ståhl, Niclas, et al.
Publicado: (2018) -
Detecting Potential Adverse Drug Reactions Using a Deep Neural Network Model
por: Wang, Chi-Shiang, et al.
Publicado: (2019) -
Large-scale prediction of adverse drug reactions using chemical, biological, and phenotypic properties of drugs
por: Liu, Mei, et al.
Publicado: (2012)