Cargando…
Metabolic flexibilities and vulnerabilities in the pentose phosphate pathway of the zoonotic pathogen Toxoplasma gondii
Metabolic pathways underpin the growth and virulence of intracellular parasites and are therefore promising antiparasitic targets. The pentose phosphate pathway (PPP) is vital in most organisms, providing a reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) and ribose sugar for nucl...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9521846/ https://www.ncbi.nlm.nih.gov/pubmed/36121870 http://dx.doi.org/10.1371/journal.ppat.1010864 |
_version_ | 1784799931253391360 |
---|---|
author | Xia, Ningbo Guo, Xuefang Guo, Qinghong Gupta, Nishith Ji, Nuo Shen, Bang Xiao, Lihua Feng, Yaoyu |
author_facet | Xia, Ningbo Guo, Xuefang Guo, Qinghong Gupta, Nishith Ji, Nuo Shen, Bang Xiao, Lihua Feng, Yaoyu |
author_sort | Xia, Ningbo |
collection | PubMed |
description | Metabolic pathways underpin the growth and virulence of intracellular parasites and are therefore promising antiparasitic targets. The pentose phosphate pathway (PPP) is vital in most organisms, providing a reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) and ribose sugar for nucleotide synthesis; however, it has not yet been studied in Toxoplasma gondii, a widespread intracellular pathogen and a model protozoan organism. Herein, we show that T. gondii has a functional PPP distributed in the cytoplasm and nucleus of its acutely-infectious tachyzoite stage. We produced eight parasite mutants disrupting seven enzymes of the PPP in T. gondii. Our data show that of the seven PPP proteins, the two glucose-6-phosphate dehydrogenases (TgG6PDH1, TgG6PDH2), one of the two 6-phosphogluconate dehydrogenases (Tg6PGDH1), ribulose-5-phosphate epimerase (TgRuPE) and transaldolase (TgTAL) are dispensable in vitro as well as in vivo, disclosing substantial metabolic plasticity in T. gondii. Among these, TgG6PDH2 plays a vital role in defense against oxidative stress by the pathogen. Further, we show that Tg6PGDH2 and ribulose-5-phosphate isomerase (TgRPI) are critical for tachyzoite growth. The depletion of TgRPI impairs the flux of glucose in central carbon pathways, and causes decreased expression of ribosomal, microneme and rhoptry proteins. In summary, our results demonstrate the physiological need of the PPP in T. gondii while unraveling metabolic flexibility and antiparasitic targets. |
format | Online Article Text |
id | pubmed-9521846 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-95218462022-09-30 Metabolic flexibilities and vulnerabilities in the pentose phosphate pathway of the zoonotic pathogen Toxoplasma gondii Xia, Ningbo Guo, Xuefang Guo, Qinghong Gupta, Nishith Ji, Nuo Shen, Bang Xiao, Lihua Feng, Yaoyu PLoS Pathog Research Article Metabolic pathways underpin the growth and virulence of intracellular parasites and are therefore promising antiparasitic targets. The pentose phosphate pathway (PPP) is vital in most organisms, providing a reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) and ribose sugar for nucleotide synthesis; however, it has not yet been studied in Toxoplasma gondii, a widespread intracellular pathogen and a model protozoan organism. Herein, we show that T. gondii has a functional PPP distributed in the cytoplasm and nucleus of its acutely-infectious tachyzoite stage. We produced eight parasite mutants disrupting seven enzymes of the PPP in T. gondii. Our data show that of the seven PPP proteins, the two glucose-6-phosphate dehydrogenases (TgG6PDH1, TgG6PDH2), one of the two 6-phosphogluconate dehydrogenases (Tg6PGDH1), ribulose-5-phosphate epimerase (TgRuPE) and transaldolase (TgTAL) are dispensable in vitro as well as in vivo, disclosing substantial metabolic plasticity in T. gondii. Among these, TgG6PDH2 plays a vital role in defense against oxidative stress by the pathogen. Further, we show that Tg6PGDH2 and ribulose-5-phosphate isomerase (TgRPI) are critical for tachyzoite growth. The depletion of TgRPI impairs the flux of glucose in central carbon pathways, and causes decreased expression of ribosomal, microneme and rhoptry proteins. In summary, our results demonstrate the physiological need of the PPP in T. gondii while unraveling metabolic flexibility and antiparasitic targets. Public Library of Science 2022-09-19 /pmc/articles/PMC9521846/ /pubmed/36121870 http://dx.doi.org/10.1371/journal.ppat.1010864 Text en © 2022 Xia et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Xia, Ningbo Guo, Xuefang Guo, Qinghong Gupta, Nishith Ji, Nuo Shen, Bang Xiao, Lihua Feng, Yaoyu Metabolic flexibilities and vulnerabilities in the pentose phosphate pathway of the zoonotic pathogen Toxoplasma gondii |
title | Metabolic flexibilities and vulnerabilities in the pentose phosphate pathway of the zoonotic pathogen Toxoplasma gondii |
title_full | Metabolic flexibilities and vulnerabilities in the pentose phosphate pathway of the zoonotic pathogen Toxoplasma gondii |
title_fullStr | Metabolic flexibilities and vulnerabilities in the pentose phosphate pathway of the zoonotic pathogen Toxoplasma gondii |
title_full_unstemmed | Metabolic flexibilities and vulnerabilities in the pentose phosphate pathway of the zoonotic pathogen Toxoplasma gondii |
title_short | Metabolic flexibilities and vulnerabilities in the pentose phosphate pathway of the zoonotic pathogen Toxoplasma gondii |
title_sort | metabolic flexibilities and vulnerabilities in the pentose phosphate pathway of the zoonotic pathogen toxoplasma gondii |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9521846/ https://www.ncbi.nlm.nih.gov/pubmed/36121870 http://dx.doi.org/10.1371/journal.ppat.1010864 |
work_keys_str_mv | AT xianingbo metabolicflexibilitiesandvulnerabilitiesinthepentosephosphatepathwayofthezoonoticpathogentoxoplasmagondii AT guoxuefang metabolicflexibilitiesandvulnerabilitiesinthepentosephosphatepathwayofthezoonoticpathogentoxoplasmagondii AT guoqinghong metabolicflexibilitiesandvulnerabilitiesinthepentosephosphatepathwayofthezoonoticpathogentoxoplasmagondii AT guptanishith metabolicflexibilitiesandvulnerabilitiesinthepentosephosphatepathwayofthezoonoticpathogentoxoplasmagondii AT jinuo metabolicflexibilitiesandvulnerabilitiesinthepentosephosphatepathwayofthezoonoticpathogentoxoplasmagondii AT shenbang metabolicflexibilitiesandvulnerabilitiesinthepentosephosphatepathwayofthezoonoticpathogentoxoplasmagondii AT xiaolihua metabolicflexibilitiesandvulnerabilitiesinthepentosephosphatepathwayofthezoonoticpathogentoxoplasmagondii AT fengyaoyu metabolicflexibilitiesandvulnerabilitiesinthepentosephosphatepathwayofthezoonoticpathogentoxoplasmagondii |