Cargando…
Synaptic balancing: A biologically plausible local learning rule that provably increases neural network noise robustness without sacrificing task performance
We introduce a novel, biologically plausible local learning rule that provably increases the robustness of neural dynamics to noise in nonlinear recurrent neural networks with homogeneous nonlinearities. Our learning rule achieves higher noise robustness without sacrificing performance on the task a...
Autores principales: | Stock, Christopher H., Harvey, Sarah E., Ocko, Samuel A., Ganguli, Surya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9522011/ https://www.ncbi.nlm.nih.gov/pubmed/36121844 http://dx.doi.org/10.1371/journal.pcbi.1010418 |
Ejemplares similares
-
Biologically plausible local synaptic learning rules robustly implement deep supervised learning
por: Konishi, Masataka, et al.
Publicado: (2023) -
Provability, complexity, grammars
por: Beklemishev, Lev, et al.
Publicado: (1999) -
Provably correct systems
por: Hinchey, Mike, et al.
Publicado: (2017) -
Sacrificed Lives
Publicado: (1869) -
Leveraging family data to design Mendelian Randomization that is provably robust to population stratification
por: LaPierre, Nathan, et al.
Publicado: (2023)