Cargando…

Self-sacrificial tyrosine cleavage by an Fe:Mn oxygenase for the biosynthesis of para-aminobenzoate in Chlamydia trachomatis

Chlamydia protein associating with death domains (CADD) is involved in the biosynthesis of para-aminobenzoate (pABA), an essential component of the folate cofactor that is required for the survival and proliferation of the human pathogen Chlamydia trachomatis. The pathway used by Chlamydiae for pABA...

Descripción completa

Detalles Bibliográficos
Autores principales: Manley, Olivia M., Phan, Han N., Stewart, Allison K., Mosley, Dontae A., Xue, Shan, Cha, Lide, Bai, Hongxia, Lightfoot, Veda C., Rucker, Pierson A., Collins, Leonard, Williams, Taufika Islam, Chang, Wei-Chen, Guo, Yisong, Makris, Thomas M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9522330/
https://www.ncbi.nlm.nih.gov/pubmed/36122239
http://dx.doi.org/10.1073/pnas.2210908119
_version_ 1784800041168273408
author Manley, Olivia M.
Phan, Han N.
Stewart, Allison K.
Mosley, Dontae A.
Xue, Shan
Cha, Lide
Bai, Hongxia
Lightfoot, Veda C.
Rucker, Pierson A.
Collins, Leonard
Williams, Taufika Islam
Chang, Wei-Chen
Guo, Yisong
Makris, Thomas M.
author_facet Manley, Olivia M.
Phan, Han N.
Stewart, Allison K.
Mosley, Dontae A.
Xue, Shan
Cha, Lide
Bai, Hongxia
Lightfoot, Veda C.
Rucker, Pierson A.
Collins, Leonard
Williams, Taufika Islam
Chang, Wei-Chen
Guo, Yisong
Makris, Thomas M.
author_sort Manley, Olivia M.
collection PubMed
description Chlamydia protein associating with death domains (CADD) is involved in the biosynthesis of para-aminobenzoate (pABA), an essential component of the folate cofactor that is required for the survival and proliferation of the human pathogen Chlamydia trachomatis. The pathway used by Chlamydiae for pABA synthesis differs from the canonical multi-enzyme pathway used by most bacteria that relies on chorismate as a metabolic precursor. Rather, recent work showed pABA formation by CADD derives from l-tyrosine. As a member of the emerging superfamily of heme oxygenase–like diiron oxidases (HDOs), CADD was proposed to use a diiron cofactor for catalysis. However, we report maximal pABA formation by CADD occurs upon the addition of both iron and manganese, which implicates a heterobimetallic Fe:Mn cluster is the catalytically active form. Isotopic labeling experiments and proteomics studies show that CADD generates pABA from a protein-derived tyrosine (Tyr27), a residue that is ∼14 Å from the dimetal site. We propose that this self-sacrificial reaction occurs through O(2) activation by a probable Fe:Mn cluster through a radical relay mechanism that connects to the “substrate” Tyr, followed by amination and direct oxygen insertion. These results provide the molecular basis for pABA formation in C. trachomatis, which will inform the design of novel therapeutics.
format Online
Article
Text
id pubmed-9522330
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-95223302023-03-19 Self-sacrificial tyrosine cleavage by an Fe:Mn oxygenase for the biosynthesis of para-aminobenzoate in Chlamydia trachomatis Manley, Olivia M. Phan, Han N. Stewart, Allison K. Mosley, Dontae A. Xue, Shan Cha, Lide Bai, Hongxia Lightfoot, Veda C. Rucker, Pierson A. Collins, Leonard Williams, Taufika Islam Chang, Wei-Chen Guo, Yisong Makris, Thomas M. Proc Natl Acad Sci U S A Biological Sciences Chlamydia protein associating with death domains (CADD) is involved in the biosynthesis of para-aminobenzoate (pABA), an essential component of the folate cofactor that is required for the survival and proliferation of the human pathogen Chlamydia trachomatis. The pathway used by Chlamydiae for pABA synthesis differs from the canonical multi-enzyme pathway used by most bacteria that relies on chorismate as a metabolic precursor. Rather, recent work showed pABA formation by CADD derives from l-tyrosine. As a member of the emerging superfamily of heme oxygenase–like diiron oxidases (HDOs), CADD was proposed to use a diiron cofactor for catalysis. However, we report maximal pABA formation by CADD occurs upon the addition of both iron and manganese, which implicates a heterobimetallic Fe:Mn cluster is the catalytically active form. Isotopic labeling experiments and proteomics studies show that CADD generates pABA from a protein-derived tyrosine (Tyr27), a residue that is ∼14 Å from the dimetal site. We propose that this self-sacrificial reaction occurs through O(2) activation by a probable Fe:Mn cluster through a radical relay mechanism that connects to the “substrate” Tyr, followed by amination and direct oxygen insertion. These results provide the molecular basis for pABA formation in C. trachomatis, which will inform the design of novel therapeutics. National Academy of Sciences 2022-09-19 2022-09-27 /pmc/articles/PMC9522330/ /pubmed/36122239 http://dx.doi.org/10.1073/pnas.2210908119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
Manley, Olivia M.
Phan, Han N.
Stewart, Allison K.
Mosley, Dontae A.
Xue, Shan
Cha, Lide
Bai, Hongxia
Lightfoot, Veda C.
Rucker, Pierson A.
Collins, Leonard
Williams, Taufika Islam
Chang, Wei-Chen
Guo, Yisong
Makris, Thomas M.
Self-sacrificial tyrosine cleavage by an Fe:Mn oxygenase for the biosynthesis of para-aminobenzoate in Chlamydia trachomatis
title Self-sacrificial tyrosine cleavage by an Fe:Mn oxygenase for the biosynthesis of para-aminobenzoate in Chlamydia trachomatis
title_full Self-sacrificial tyrosine cleavage by an Fe:Mn oxygenase for the biosynthesis of para-aminobenzoate in Chlamydia trachomatis
title_fullStr Self-sacrificial tyrosine cleavage by an Fe:Mn oxygenase for the biosynthesis of para-aminobenzoate in Chlamydia trachomatis
title_full_unstemmed Self-sacrificial tyrosine cleavage by an Fe:Mn oxygenase for the biosynthesis of para-aminobenzoate in Chlamydia trachomatis
title_short Self-sacrificial tyrosine cleavage by an Fe:Mn oxygenase for the biosynthesis of para-aminobenzoate in Chlamydia trachomatis
title_sort self-sacrificial tyrosine cleavage by an fe:mn oxygenase for the biosynthesis of para-aminobenzoate in chlamydia trachomatis
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9522330/
https://www.ncbi.nlm.nih.gov/pubmed/36122239
http://dx.doi.org/10.1073/pnas.2210908119
work_keys_str_mv AT manleyoliviam selfsacrificialtyrosinecleavagebyanfemnoxygenaseforthebiosynthesisofparaaminobenzoateinchlamydiatrachomatis
AT phanhann selfsacrificialtyrosinecleavagebyanfemnoxygenaseforthebiosynthesisofparaaminobenzoateinchlamydiatrachomatis
AT stewartallisonk selfsacrificialtyrosinecleavagebyanfemnoxygenaseforthebiosynthesisofparaaminobenzoateinchlamydiatrachomatis
AT mosleydontaea selfsacrificialtyrosinecleavagebyanfemnoxygenaseforthebiosynthesisofparaaminobenzoateinchlamydiatrachomatis
AT xueshan selfsacrificialtyrosinecleavagebyanfemnoxygenaseforthebiosynthesisofparaaminobenzoateinchlamydiatrachomatis
AT chalide selfsacrificialtyrosinecleavagebyanfemnoxygenaseforthebiosynthesisofparaaminobenzoateinchlamydiatrachomatis
AT baihongxia selfsacrificialtyrosinecleavagebyanfemnoxygenaseforthebiosynthesisofparaaminobenzoateinchlamydiatrachomatis
AT lightfootvedac selfsacrificialtyrosinecleavagebyanfemnoxygenaseforthebiosynthesisofparaaminobenzoateinchlamydiatrachomatis
AT ruckerpiersona selfsacrificialtyrosinecleavagebyanfemnoxygenaseforthebiosynthesisofparaaminobenzoateinchlamydiatrachomatis
AT collinsleonard selfsacrificialtyrosinecleavagebyanfemnoxygenaseforthebiosynthesisofparaaminobenzoateinchlamydiatrachomatis
AT williamstaufikaislam selfsacrificialtyrosinecleavagebyanfemnoxygenaseforthebiosynthesisofparaaminobenzoateinchlamydiatrachomatis
AT changweichen selfsacrificialtyrosinecleavagebyanfemnoxygenaseforthebiosynthesisofparaaminobenzoateinchlamydiatrachomatis
AT guoyisong selfsacrificialtyrosinecleavagebyanfemnoxygenaseforthebiosynthesisofparaaminobenzoateinchlamydiatrachomatis
AT makristhomasm selfsacrificialtyrosinecleavagebyanfemnoxygenaseforthebiosynthesisofparaaminobenzoateinchlamydiatrachomatis