Cargando…
Self-sacrificial tyrosine cleavage by an Fe:Mn oxygenase for the biosynthesis of para-aminobenzoate in Chlamydia trachomatis
Chlamydia protein associating with death domains (CADD) is involved in the biosynthesis of para-aminobenzoate (pABA), an essential component of the folate cofactor that is required for the survival and proliferation of the human pathogen Chlamydia trachomatis. The pathway used by Chlamydiae for pABA...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9522330/ https://www.ncbi.nlm.nih.gov/pubmed/36122239 http://dx.doi.org/10.1073/pnas.2210908119 |
_version_ | 1784800041168273408 |
---|---|
author | Manley, Olivia M. Phan, Han N. Stewart, Allison K. Mosley, Dontae A. Xue, Shan Cha, Lide Bai, Hongxia Lightfoot, Veda C. Rucker, Pierson A. Collins, Leonard Williams, Taufika Islam Chang, Wei-Chen Guo, Yisong Makris, Thomas M. |
author_facet | Manley, Olivia M. Phan, Han N. Stewart, Allison K. Mosley, Dontae A. Xue, Shan Cha, Lide Bai, Hongxia Lightfoot, Veda C. Rucker, Pierson A. Collins, Leonard Williams, Taufika Islam Chang, Wei-Chen Guo, Yisong Makris, Thomas M. |
author_sort | Manley, Olivia M. |
collection | PubMed |
description | Chlamydia protein associating with death domains (CADD) is involved in the biosynthesis of para-aminobenzoate (pABA), an essential component of the folate cofactor that is required for the survival and proliferation of the human pathogen Chlamydia trachomatis. The pathway used by Chlamydiae for pABA synthesis differs from the canonical multi-enzyme pathway used by most bacteria that relies on chorismate as a metabolic precursor. Rather, recent work showed pABA formation by CADD derives from l-tyrosine. As a member of the emerging superfamily of heme oxygenase–like diiron oxidases (HDOs), CADD was proposed to use a diiron cofactor for catalysis. However, we report maximal pABA formation by CADD occurs upon the addition of both iron and manganese, which implicates a heterobimetallic Fe:Mn cluster is the catalytically active form. Isotopic labeling experiments and proteomics studies show that CADD generates pABA from a protein-derived tyrosine (Tyr27), a residue that is ∼14 Å from the dimetal site. We propose that this self-sacrificial reaction occurs through O(2) activation by a probable Fe:Mn cluster through a radical relay mechanism that connects to the “substrate” Tyr, followed by amination and direct oxygen insertion. These results provide the molecular basis for pABA formation in C. trachomatis, which will inform the design of novel therapeutics. |
format | Online Article Text |
id | pubmed-9522330 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-95223302023-03-19 Self-sacrificial tyrosine cleavage by an Fe:Mn oxygenase for the biosynthesis of para-aminobenzoate in Chlamydia trachomatis Manley, Olivia M. Phan, Han N. Stewart, Allison K. Mosley, Dontae A. Xue, Shan Cha, Lide Bai, Hongxia Lightfoot, Veda C. Rucker, Pierson A. Collins, Leonard Williams, Taufika Islam Chang, Wei-Chen Guo, Yisong Makris, Thomas M. Proc Natl Acad Sci U S A Biological Sciences Chlamydia protein associating with death domains (CADD) is involved in the biosynthesis of para-aminobenzoate (pABA), an essential component of the folate cofactor that is required for the survival and proliferation of the human pathogen Chlamydia trachomatis. The pathway used by Chlamydiae for pABA synthesis differs from the canonical multi-enzyme pathway used by most bacteria that relies on chorismate as a metabolic precursor. Rather, recent work showed pABA formation by CADD derives from l-tyrosine. As a member of the emerging superfamily of heme oxygenase–like diiron oxidases (HDOs), CADD was proposed to use a diiron cofactor for catalysis. However, we report maximal pABA formation by CADD occurs upon the addition of both iron and manganese, which implicates a heterobimetallic Fe:Mn cluster is the catalytically active form. Isotopic labeling experiments and proteomics studies show that CADD generates pABA from a protein-derived tyrosine (Tyr27), a residue that is ∼14 Å from the dimetal site. We propose that this self-sacrificial reaction occurs through O(2) activation by a probable Fe:Mn cluster through a radical relay mechanism that connects to the “substrate” Tyr, followed by amination and direct oxygen insertion. These results provide the molecular basis for pABA formation in C. trachomatis, which will inform the design of novel therapeutics. National Academy of Sciences 2022-09-19 2022-09-27 /pmc/articles/PMC9522330/ /pubmed/36122239 http://dx.doi.org/10.1073/pnas.2210908119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Manley, Olivia M. Phan, Han N. Stewart, Allison K. Mosley, Dontae A. Xue, Shan Cha, Lide Bai, Hongxia Lightfoot, Veda C. Rucker, Pierson A. Collins, Leonard Williams, Taufika Islam Chang, Wei-Chen Guo, Yisong Makris, Thomas M. Self-sacrificial tyrosine cleavage by an Fe:Mn oxygenase for the biosynthesis of para-aminobenzoate in Chlamydia trachomatis |
title | Self-sacrificial tyrosine cleavage by an Fe:Mn oxygenase for the biosynthesis of para-aminobenzoate in Chlamydia trachomatis |
title_full | Self-sacrificial tyrosine cleavage by an Fe:Mn oxygenase for the biosynthesis of para-aminobenzoate in Chlamydia trachomatis |
title_fullStr | Self-sacrificial tyrosine cleavage by an Fe:Mn oxygenase for the biosynthesis of para-aminobenzoate in Chlamydia trachomatis |
title_full_unstemmed | Self-sacrificial tyrosine cleavage by an Fe:Mn oxygenase for the biosynthesis of para-aminobenzoate in Chlamydia trachomatis |
title_short | Self-sacrificial tyrosine cleavage by an Fe:Mn oxygenase for the biosynthesis of para-aminobenzoate in Chlamydia trachomatis |
title_sort | self-sacrificial tyrosine cleavage by an fe:mn oxygenase for the biosynthesis of para-aminobenzoate in chlamydia trachomatis |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9522330/ https://www.ncbi.nlm.nih.gov/pubmed/36122239 http://dx.doi.org/10.1073/pnas.2210908119 |
work_keys_str_mv | AT manleyoliviam selfsacrificialtyrosinecleavagebyanfemnoxygenaseforthebiosynthesisofparaaminobenzoateinchlamydiatrachomatis AT phanhann selfsacrificialtyrosinecleavagebyanfemnoxygenaseforthebiosynthesisofparaaminobenzoateinchlamydiatrachomatis AT stewartallisonk selfsacrificialtyrosinecleavagebyanfemnoxygenaseforthebiosynthesisofparaaminobenzoateinchlamydiatrachomatis AT mosleydontaea selfsacrificialtyrosinecleavagebyanfemnoxygenaseforthebiosynthesisofparaaminobenzoateinchlamydiatrachomatis AT xueshan selfsacrificialtyrosinecleavagebyanfemnoxygenaseforthebiosynthesisofparaaminobenzoateinchlamydiatrachomatis AT chalide selfsacrificialtyrosinecleavagebyanfemnoxygenaseforthebiosynthesisofparaaminobenzoateinchlamydiatrachomatis AT baihongxia selfsacrificialtyrosinecleavagebyanfemnoxygenaseforthebiosynthesisofparaaminobenzoateinchlamydiatrachomatis AT lightfootvedac selfsacrificialtyrosinecleavagebyanfemnoxygenaseforthebiosynthesisofparaaminobenzoateinchlamydiatrachomatis AT ruckerpiersona selfsacrificialtyrosinecleavagebyanfemnoxygenaseforthebiosynthesisofparaaminobenzoateinchlamydiatrachomatis AT collinsleonard selfsacrificialtyrosinecleavagebyanfemnoxygenaseforthebiosynthesisofparaaminobenzoateinchlamydiatrachomatis AT williamstaufikaislam selfsacrificialtyrosinecleavagebyanfemnoxygenaseforthebiosynthesisofparaaminobenzoateinchlamydiatrachomatis AT changweichen selfsacrificialtyrosinecleavagebyanfemnoxygenaseforthebiosynthesisofparaaminobenzoateinchlamydiatrachomatis AT guoyisong selfsacrificialtyrosinecleavagebyanfemnoxygenaseforthebiosynthesisofparaaminobenzoateinchlamydiatrachomatis AT makristhomasm selfsacrificialtyrosinecleavagebyanfemnoxygenaseforthebiosynthesisofparaaminobenzoateinchlamydiatrachomatis |