Cargando…
Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods
The present paper examines the relative out-of-sample predictive ability of GARCH, GARCH-M, EGARCH, TGARCH and PGARCH models for ten Asian markets by using three different time frames and two different methods, considering the features of volatility clustering, leverage effect and volatility persist...
Autor principal: | Sahiner, Mehmet |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9522449/ https://www.ncbi.nlm.nih.gov/pubmed/36196266 http://dx.doi.org/10.1007/s43546-022-00329-9 |
Ejemplares similares
-
Do artificial neural networks provide improved volatility forecasts: Evidence from Asian markets
por: Sahiner, Mehmet, et al.
Publicado: (2023) -
Financial uncertainty and interest rate movements: is Asian bond market volatility different?
por: Kim, Jungsuk, et al.
Publicado: (2021) -
Forecast the Role of GCC Financial Stress on Oil Market and GCC Financial Markets Using Convolutional Neural Networks
por: Mezghani, Taicir, et al.
Publicado: (2022) -
The role of coronavirus news in the volatility forecasting of crude oil futures markets: Evidence from China()
por: Niu, Zibo, et al.
Publicado: (2021) -
Financial market predictability with tensor decomposition and links forecast
por: Spelta, A.
Publicado: (2017)