Cargando…
lncRNA DARS-AS1 Modulates TSPAN1-Mediated ITGA2 Hypomethylation by Interaction with miR-194-5p Thus Promoting Ovarian Cancer Progression
OBJECTIVE: Ovarian cancer (OC) is usually called the “silent killer” due to its asymptomatic characteristics until advanced stages, thus being a significant threat to female health worldwide. In this work, we characterized an oncogenic DARS-AS1 role in OC. METHODS: The aggressiveness behaviors of th...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9522497/ https://www.ncbi.nlm.nih.gov/pubmed/36187230 http://dx.doi.org/10.1155/2022/4041550 |
Sumario: | OBJECTIVE: Ovarian cancer (OC) is usually called the “silent killer” due to its asymptomatic characteristics until advanced stages, thus being a significant threat to female health worldwide. In this work, we characterized an oncogenic DARS-AS1 role in OC. METHODS: The aggressiveness behaviors of the OC cell model were examined by CCK-8 assay, transwell invasion assay, flow cytometry, and immunoblotting analysis of apoptosis-related proteins. Interactions of miR-194-5p with lncRNA DARS-AS1 or TSPAN1 and of TSPAN1 with ITGA2 were validated by using a luciferase activity assay and chromatin immunoprecipitation (ChIP) assay. RESULTS: The OC cell model exhibited overexpressed lncRNA DARS-AS1 compared to normal cells. lncRNA DARS-AS1 knockdown led to reduced OC cell growth and metastasis while inducing the apoptosis in the OC cell model. lncRNA DARS-AS1 positively regulated TSPAN1 expression by binding with miR-194-5p and TSPAN1-mediated ITGA2 hypomethylation in OC cells. Further rescue function studies demonstrated that lncRNA DARS-AS1 affected OC cell viability, migration, invasion, and apoptosis ability by modulating miR-194-5p and TSPAN1 expressions. CONCLUSION: Our work demonstrates that lncRNA DARS-AS1 promotes OC progression by modulating TSPAN1 and ITGA2 hypomethylation by binding with miR-194-5p. |
---|