Cargando…
The Evaluation on the Credit Risk of Enterprises with the CNN-LSTM-ATT Model
Credit evaluation is a difficult problem in the process of financing and loan for small and medium-sized enterprises. Due to the high dimension and nonlinearity of enterprise behavior data, traditional logistic regression (LR), random forest (RF), and other methods, when the feature space is very la...
Autor principal: | Zhang, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9522511/ https://www.ncbi.nlm.nih.gov/pubmed/36188679 http://dx.doi.org/10.1155/2022/6826573 |
Ejemplares similares
-
A CNN-LSTM-att hybrid model for classification and evaluation of growth status under drought and heat stress in chinese fir (Cunninghamia lanceolata)
por: Xing, Dong, et al.
Publicado: (2023) -
Flight Delay Regression Prediction Model Based on Att-Conv-LSTM
por: Qu, Jingyi, et al.
Publicado: (2023) -
Rural micro-credit model design and credit risk assessment via improved LSTM algorithm
por: Gao, Xia, et al.
Publicado: (2023) -
A Meta-Path-Based Evaluation Method for Enterprise Credit Risk
por: Du, Marui, et al.
Publicado: (2022) -
Academic Emotion Classification and Recognition Method for Large-scale Online Learning Environment—Based on A-CNN and LSTM-ATT Deep Learning Pipeline Method
por: Feng, Xiang, et al.
Publicado: (2020)