Cargando…
Predicting the in-game status in soccer with machine learning using spatiotemporal player tracking data
An important structuring feature of a soccer match is the in-game status, whether a match is interrupted or in play. This is necessary to calculate performance indicators relative to the effective playing time or to find standard situations, ball actions, and other tactical structures in spatiotempo...
Autores principales: | Lang, Steffen, Wild, Raphael, Isenko, Alexander, Link, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9522646/ https://www.ncbi.nlm.nih.gov/pubmed/36175432 http://dx.doi.org/10.1038/s41598-022-19948-1 |
Ejemplares similares
-
Real Time Quantification of Dangerousity in Football Using Spatiotemporal Tracking Data
por: Link, Daniel, et al.
Publicado: (2016) -
Spatiotemporal and Kinetic Determinants of Sprint Acceleration Performance in Soccer Players
por: Murata, Munenori, et al.
Publicado: (2018) -
Variations in Elite Female Soccer Players' Sleep, and Associations With Perceived Fatigue and Soccer Games
por: Moen, Frode, et al.
Publicado: (2021) -
Validation of a motion model for soccer players’ sprint by means of tracking data
por: Narizuka, Takuma, et al.
Publicado: (2023) -
An Approach to the Fatigue in Young Soccer Players Resulting from Sided Games
por: Castillo, Daniel, et al.
Publicado: (2019)