Cargando…
Deep language algorithms predict semantic comprehension from brain activity
Deep language algorithms, like GPT-2, have demonstrated remarkable abilities to process text, and now constitute the backbone of automatic translation, summarization and dialogue. However, whether these models encode information that relates to human comprehension still remains controversial. Here,...
Autores principales: | Caucheteux, Charlotte, Gramfort, Alexandre, King, Jean-Rémi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9522791/ https://www.ncbi.nlm.nih.gov/pubmed/36175483 http://dx.doi.org/10.1038/s41598-022-20460-9 |
Ejemplares similares
-
Evidence of a predictive coding hierarchy in the human brain listening to speech
por: Caucheteux, Charlotte, et al.
Publicado: (2023) -
Brains and algorithms partially converge in natural language processing
por: Caucheteux, Charlotte, et al.
Publicado: (2022) -
Author Correction: Brains and algorithms partially converge in natural language processing
por: Caucheteux, Charlotte, et al.
Publicado: (2023) -
Semantic prediction in language comprehension: evidence from brain potentials
por: Freunberger, Dominik, et al.
Publicado: (2016) -
Prediction Signatures in the Brain: Semantic Pre-Activation during Language Comprehension
por: Maess, Burkhard, et al.
Publicado: (2016)