Cargando…
Time series reconstructing using calibrated reservoir computing
Reservoir computing, a new method of machine learning, has recently been used to predict the state evolution of various chaotic dynamic systems. It has significant advantages in terms of training cost and adjusted parameters; however, the prediction length is limited. For classic reservoir computing...
Autores principales: | Chen, Yeyuge, Qian, Yu, Cui, Xiaohua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9522934/ https://www.ncbi.nlm.nih.gov/pubmed/36175460 http://dx.doi.org/10.1038/s41598-022-20331-3 |
Ejemplares similares
-
Optimizing a quantum reservoir computer for time series prediction
por: Kutvonen, Aki, et al.
Publicado: (2020) -
Optimizing quantum noise-induced reservoir computing for nonlinear and chaotic time series prediction
por: Fry, Daniel, et al.
Publicado: (2023) -
Bayesian calibration of hydrocarbon reservoir models using an approximate reservoir simulator in the prior specification
por: Lødøen, Ole Petter, et al.
Publicado: (2005) -
Prediction of chaotic time series using recurrent neural networks and reservoir computing techniques: A comparative study
por: Shahi, Shahrokh, et al.
Publicado: (2022) -
Tipping Point Detection Using Reservoir Computing
por: Li, Xin, et al.
Publicado: (2023)