Cargando…
Brain inspired neuronal silencing mechanism to enable reliable sequence identification
Real-time sequence identification is a core use-case of artificial neural networks (ANNs), ranging from recognizing temporal events to identifying verification codes. Existing methods apply recurrent neural networks, which suffer from training difficulties; however, performing this function without...
Autores principales: | Hodassman, Shiri, Meir, Yuval, Kisos, Karin, Ben-Noam, Itamar, Tugendhaft, Yael, Goldental, Amir, Vardi, Roni, Kanter, Ido |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9523036/ https://www.ncbi.nlm.nih.gov/pubmed/36175466 http://dx.doi.org/10.1038/s41598-022-20337-x |
Ejemplares similares
-
Publisher Correction: Brain experiments imply adaptation mechanisms which outperform common AI learning algorithms
por: Sardi, Shira, et al.
Publicado: (2020) -
Brain experiments imply adaptation mechanisms which outperform common AI learning algorithms
por: Sardi, Shira, et al.
Publicado: (2020) -
Efficient dendritic learning as an alternative to synaptic plasticity hypothesis
por: Hodassman, Shiri, et al.
Publicado: (2022) -
Power-law scaling to assist with key challenges in artificial intelligence
por: Meir, Yuval, et al.
Publicado: (2020) -
Learning on tree architectures outperforms a convolutional feedforward network
por: Meir, Yuval, et al.
Publicado: (2023)