Cargando…
Machine learning-based prediction of the post-thrombotic syndrome: Model development and validation study
BACKGROUND: Prevention is highly involved in reducing the incidence of post-thrombotic syndrome (PTS). We aimed to develop accurate models with machine learning (ML) algorithms to predict whether PTS would occur within 24 months. MATERIALS AND METHODS: The clinical data used for model building were...
Autores principales: | Yu, Tao, Shen, Runnan, You, Guochang, Lv, Lin, Kang, Shimao, Wang, Xiaoyan, Xu, Jiatang, Zhu, Dongxi, Xia, Zuqi, Zheng, Junmeng, Huang, Kai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9523080/ https://www.ncbi.nlm.nih.gov/pubmed/36186967 http://dx.doi.org/10.3389/fcvm.2022.990788 |
Ejemplares similares
-
Comparison of day surgery between varicose veins with and without superficial venous thrombosis below knee: a propensity score-matched analysis
por: Xu, Jiatang, et al.
Publicado: (2023) -
Prognostic nomogram for 30-day mortality of deep vein thrombosis patients in intensive care unit
por: Shen, Runnan, et al.
Publicado: (2021) -
A systematic evaluation and meta-analysis of early prediction of post-thrombotic syndrome
por: Yu, Tong, et al.
Publicado: (2023) -
Leisure sedentary behaviour increases the risk of venous thromboembolism: a Mendelian randomisation study
por: Chen, Liang, et al.
Publicado: (2023) -
The role of monocytes in thrombotic diseases: a review
por: Han, Zhongyu, et al.
Publicado: (2023)