Cargando…
Comprehensive multi-omics single-cell data integration reveals greater heterogeneity in the human immune system
Single-cell transcriptomics enables the definition of diverse human immune cell types across multiple tissues and disease contexts. Further deeper biological understanding requires comprehensive integration of multiple single-cell omics (transcriptomic, proteomic, and cell-receptor repertoire). To i...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9523353/ https://www.ncbi.nlm.nih.gov/pubmed/36185375 http://dx.doi.org/10.1016/j.isci.2022.105123 |
_version_ | 1784800269478920192 |
---|---|
author | Xu, Congmin Yang, Junkai Kosters, Astrid Babcock, Benjamin R. Qiu, Peng Ghosn, Eliver E.B. |
author_facet | Xu, Congmin Yang, Junkai Kosters, Astrid Babcock, Benjamin R. Qiu, Peng Ghosn, Eliver E.B. |
author_sort | Xu, Congmin |
collection | PubMed |
description | Single-cell transcriptomics enables the definition of diverse human immune cell types across multiple tissues and disease contexts. Further deeper biological understanding requires comprehensive integration of multiple single-cell omics (transcriptomic, proteomic, and cell-receptor repertoire). To improve the identification of diverse cell types and the accuracy of cell-type classification in multi-omics single-cell datasets, we developed SuPERR, a novel analysis workflow to increase the resolution and accuracy of clustering and allow for the discovery of previously hidden cell subsets. In addition, SuPERR accurately removes cell doublets and prevents widespread cell-type misclassification by incorporating information from cell-surface proteins and immunoglobulin transcript counts. This approach uniquely improves the identification of heterogeneous cell types and states in the human immune system, including rare subsets of antibody-secreting cells in the bone marrow. |
format | Online Article Text |
id | pubmed-9523353 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-95233532022-10-01 Comprehensive multi-omics single-cell data integration reveals greater heterogeneity in the human immune system Xu, Congmin Yang, Junkai Kosters, Astrid Babcock, Benjamin R. Qiu, Peng Ghosn, Eliver E.B. iScience Article Single-cell transcriptomics enables the definition of diverse human immune cell types across multiple tissues and disease contexts. Further deeper biological understanding requires comprehensive integration of multiple single-cell omics (transcriptomic, proteomic, and cell-receptor repertoire). To improve the identification of diverse cell types and the accuracy of cell-type classification in multi-omics single-cell datasets, we developed SuPERR, a novel analysis workflow to increase the resolution and accuracy of clustering and allow for the discovery of previously hidden cell subsets. In addition, SuPERR accurately removes cell doublets and prevents widespread cell-type misclassification by incorporating information from cell-surface proteins and immunoglobulin transcript counts. This approach uniquely improves the identification of heterogeneous cell types and states in the human immune system, including rare subsets of antibody-secreting cells in the bone marrow. Elsevier 2022-09-13 /pmc/articles/PMC9523353/ /pubmed/36185375 http://dx.doi.org/10.1016/j.isci.2022.105123 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Xu, Congmin Yang, Junkai Kosters, Astrid Babcock, Benjamin R. Qiu, Peng Ghosn, Eliver E.B. Comprehensive multi-omics single-cell data integration reveals greater heterogeneity in the human immune system |
title | Comprehensive multi-omics single-cell data integration reveals greater heterogeneity in the human immune system |
title_full | Comprehensive multi-omics single-cell data integration reveals greater heterogeneity in the human immune system |
title_fullStr | Comprehensive multi-omics single-cell data integration reveals greater heterogeneity in the human immune system |
title_full_unstemmed | Comprehensive multi-omics single-cell data integration reveals greater heterogeneity in the human immune system |
title_short | Comprehensive multi-omics single-cell data integration reveals greater heterogeneity in the human immune system |
title_sort | comprehensive multi-omics single-cell data integration reveals greater heterogeneity in the human immune system |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9523353/ https://www.ncbi.nlm.nih.gov/pubmed/36185375 http://dx.doi.org/10.1016/j.isci.2022.105123 |
work_keys_str_mv | AT xucongmin comprehensivemultiomicssinglecelldataintegrationrevealsgreaterheterogeneityinthehumanimmunesystem AT yangjunkai comprehensivemultiomicssinglecelldataintegrationrevealsgreaterheterogeneityinthehumanimmunesystem AT kostersastrid comprehensivemultiomicssinglecelldataintegrationrevealsgreaterheterogeneityinthehumanimmunesystem AT babcockbenjaminr comprehensivemultiomicssinglecelldataintegrationrevealsgreaterheterogeneityinthehumanimmunesystem AT qiupeng comprehensivemultiomicssinglecelldataintegrationrevealsgreaterheterogeneityinthehumanimmunesystem AT ghosnelivereb comprehensivemultiomicssinglecelldataintegrationrevealsgreaterheterogeneityinthehumanimmunesystem |