Cargando…

Comprehensive multi-omics single-cell data integration reveals greater heterogeneity in the human immune system

Single-cell transcriptomics enables the definition of diverse human immune cell types across multiple tissues and disease contexts. Further deeper biological understanding requires comprehensive integration of multiple single-cell omics (transcriptomic, proteomic, and cell-receptor repertoire). To i...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Congmin, Yang, Junkai, Kosters, Astrid, Babcock, Benjamin R., Qiu, Peng, Ghosn, Eliver E.B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9523353/
https://www.ncbi.nlm.nih.gov/pubmed/36185375
http://dx.doi.org/10.1016/j.isci.2022.105123
_version_ 1784800269478920192
author Xu, Congmin
Yang, Junkai
Kosters, Astrid
Babcock, Benjamin R.
Qiu, Peng
Ghosn, Eliver E.B.
author_facet Xu, Congmin
Yang, Junkai
Kosters, Astrid
Babcock, Benjamin R.
Qiu, Peng
Ghosn, Eliver E.B.
author_sort Xu, Congmin
collection PubMed
description Single-cell transcriptomics enables the definition of diverse human immune cell types across multiple tissues and disease contexts. Further deeper biological understanding requires comprehensive integration of multiple single-cell omics (transcriptomic, proteomic, and cell-receptor repertoire). To improve the identification of diverse cell types and the accuracy of cell-type classification in multi-omics single-cell datasets, we developed SuPERR, a novel analysis workflow to increase the resolution and accuracy of clustering and allow for the discovery of previously hidden cell subsets. In addition, SuPERR accurately removes cell doublets and prevents widespread cell-type misclassification by incorporating information from cell-surface proteins and immunoglobulin transcript counts. This approach uniquely improves the identification of heterogeneous cell types and states in the human immune system, including rare subsets of antibody-secreting cells in the bone marrow.
format Online
Article
Text
id pubmed-9523353
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-95233532022-10-01 Comprehensive multi-omics single-cell data integration reveals greater heterogeneity in the human immune system Xu, Congmin Yang, Junkai Kosters, Astrid Babcock, Benjamin R. Qiu, Peng Ghosn, Eliver E.B. iScience Article Single-cell transcriptomics enables the definition of diverse human immune cell types across multiple tissues and disease contexts. Further deeper biological understanding requires comprehensive integration of multiple single-cell omics (transcriptomic, proteomic, and cell-receptor repertoire). To improve the identification of diverse cell types and the accuracy of cell-type classification in multi-omics single-cell datasets, we developed SuPERR, a novel analysis workflow to increase the resolution and accuracy of clustering and allow for the discovery of previously hidden cell subsets. In addition, SuPERR accurately removes cell doublets and prevents widespread cell-type misclassification by incorporating information from cell-surface proteins and immunoglobulin transcript counts. This approach uniquely improves the identification of heterogeneous cell types and states in the human immune system, including rare subsets of antibody-secreting cells in the bone marrow. Elsevier 2022-09-13 /pmc/articles/PMC9523353/ /pubmed/36185375 http://dx.doi.org/10.1016/j.isci.2022.105123 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Xu, Congmin
Yang, Junkai
Kosters, Astrid
Babcock, Benjamin R.
Qiu, Peng
Ghosn, Eliver E.B.
Comprehensive multi-omics single-cell data integration reveals greater heterogeneity in the human immune system
title Comprehensive multi-omics single-cell data integration reveals greater heterogeneity in the human immune system
title_full Comprehensive multi-omics single-cell data integration reveals greater heterogeneity in the human immune system
title_fullStr Comprehensive multi-omics single-cell data integration reveals greater heterogeneity in the human immune system
title_full_unstemmed Comprehensive multi-omics single-cell data integration reveals greater heterogeneity in the human immune system
title_short Comprehensive multi-omics single-cell data integration reveals greater heterogeneity in the human immune system
title_sort comprehensive multi-omics single-cell data integration reveals greater heterogeneity in the human immune system
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9523353/
https://www.ncbi.nlm.nih.gov/pubmed/36185375
http://dx.doi.org/10.1016/j.isci.2022.105123
work_keys_str_mv AT xucongmin comprehensivemultiomicssinglecelldataintegrationrevealsgreaterheterogeneityinthehumanimmunesystem
AT yangjunkai comprehensivemultiomicssinglecelldataintegrationrevealsgreaterheterogeneityinthehumanimmunesystem
AT kostersastrid comprehensivemultiomicssinglecelldataintegrationrevealsgreaterheterogeneityinthehumanimmunesystem
AT babcockbenjaminr comprehensivemultiomicssinglecelldataintegrationrevealsgreaterheterogeneityinthehumanimmunesystem
AT qiupeng comprehensivemultiomicssinglecelldataintegrationrevealsgreaterheterogeneityinthehumanimmunesystem
AT ghosnelivereb comprehensivemultiomicssinglecelldataintegrationrevealsgreaterheterogeneityinthehumanimmunesystem