Cargando…
Deep learning-based self-induced emotion recognition using EEG
Emotion recognition from electroencephalogram (EEG) signals requires accurate and efficient signal processing and feature extraction. Deep learning technology has enabled the automatic extraction of raw EEG signal features that contribute to classifying emotions more accurately. Despite such advance...
Autores principales: | Ji, Yerim, Dong, Suh-Yeon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9523358/ https://www.ncbi.nlm.nih.gov/pubmed/36188460 http://dx.doi.org/10.3389/fnins.2022.985709 |
Ejemplares similares
-
An Investigation of Deep Learning Models for EEG-Based Emotion Recognition
por: Zhang, Yaqing, et al.
Publicado: (2020) -
Multi-Feature Input Deep Forest for EEG-Based Emotion Recognition
por: Fang, Yinfeng, et al.
Publicado: (2021) -
Possibilistic Clustering-Promoting Semi-Supervised Learning for EEG-Based Emotion Recognition
por: Dan, Yufang, et al.
Publicado: (2021) -
Multi-Model Adaptation Learning With Possibilistic Clustering Assumption for EEG-Based Emotion Recognition
por: Dan, Yufang, et al.
Publicado: (2022) -
Cross-Subject EEG Emotion Recognition With Self-Organized Graph Neural Network
por: Li, Jingcong, et al.
Publicado: (2021)