Cargando…
EAGS: An extracting auxiliary knowledge graph model in multi-turn dialogue generation
Multi-turn dialogue generation is an essential and challenging subtask of text generation in the question answering system. Existing methods focused on extracting latent topic-level relevance or utilizing relevant external background knowledge. However, they are prone to ignore the fact that relying...
Autores principales: | Ning, Bo, Zhao, Deji, Liu, Xinyi, Li, Guanyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9523637/ https://www.ncbi.nlm.nih.gov/pubmed/36196376 http://dx.doi.org/10.1007/s11280-022-01100-8 |
Ejemplares similares
-
Knowledge grounded medical dialogue generation using augmented graphs
por: Varshney, Deeksha, et al.
Publicado: (2023) -
Auxiliary Graph for Attribute Graph Clustering
por: Li, Wang, et al.
Publicado: (2022) -
Human–Machine Multi-Turn Language Dialogue Interaction Based on Deep Learning
por: Ke, Xianxin, et al.
Publicado: (2022) -
The Eag Domain Regulates the Voltage-Dependent Inactivation of Rat Eag1 K(+) Channels
por: Lin, Ting-Feng, et al.
Publicado: (2014) -
KRP-DS: A Knowledge Graph-Based Dialogue System with Inference-Aided Prediction
por: He, Qiang, et al.
Publicado: (2023)