Cargando…
Simultaneous control of the mechanical properties and adhesion of human umbilical vein endothelial cells to suppress platelet adhesion on a supramolecular substrate
The demand for artificial blood vessels to treat vascular disease will continue to increase in the future. To expand the application of blood-compatible poly(2-methoxyethyl acrylate) (pMEA) to artificial blood vessels, control of the mechanical properties of pMEA is established using supramolecular...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9523658/ https://www.ncbi.nlm.nih.gov/pubmed/36320244 http://dx.doi.org/10.1039/d2ra04885j |
_version_ | 1784800337475928064 |
---|---|
author | Park, Junsu Ueda, Tomoya Kawai, Yusaku Araki, Kumiko Kido, Makiko Kure, Bunsho Takenaka, Naomi Takashima, Yoshinori Tanaka, Masaru |
author_facet | Park, Junsu Ueda, Tomoya Kawai, Yusaku Araki, Kumiko Kido, Makiko Kure, Bunsho Takenaka, Naomi Takashima, Yoshinori Tanaka, Masaru |
author_sort | Park, Junsu |
collection | PubMed |
description | The demand for artificial blood vessels to treat vascular disease will continue to increase in the future. To expand the application of blood-compatible poly(2-methoxyethyl acrylate) (pMEA) to artificial blood vessels, control of the mechanical properties of pMEA is established using supramolecular cross-links based on inclusion complexation of acetylated cyclodextrin. The mechanical properties, such as Young's modulus and toughness, of these pMEA-based elastomers change with the amount of cross-links, maintaining tissue-like behavior (J-shaped stress–strain curve). Regardless of the cross-links, the pMEA-based elastomers exhibit low platelet adhesion properties (approximately 3% platelet adherence) compared with those of poly(ethylene terephthalate), which is one of the commercialized materials for artificial blood vessels. Contact angle measurements imply a shift of supramolecular cross-links in response to the surrounding environment. When immersed in water, hydrophobic supramolecular cross-links are buried within the interior of the materials, thereby exposing pMEA chains to the aqueous environment; this is why supramolecular cross-links do not affect the platelet adhesion properties. In addition, the elastomers exhibit stable adhesion to human umbilical vein endothelial cells. This report shows the potential of combining supramolecular cross-links and pMEA. |
format | Online Article Text |
id | pubmed-9523658 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-95236582022-10-31 Simultaneous control of the mechanical properties and adhesion of human umbilical vein endothelial cells to suppress platelet adhesion on a supramolecular substrate Park, Junsu Ueda, Tomoya Kawai, Yusaku Araki, Kumiko Kido, Makiko Kure, Bunsho Takenaka, Naomi Takashima, Yoshinori Tanaka, Masaru RSC Adv Chemistry The demand for artificial blood vessels to treat vascular disease will continue to increase in the future. To expand the application of blood-compatible poly(2-methoxyethyl acrylate) (pMEA) to artificial blood vessels, control of the mechanical properties of pMEA is established using supramolecular cross-links based on inclusion complexation of acetylated cyclodextrin. The mechanical properties, such as Young's modulus and toughness, of these pMEA-based elastomers change with the amount of cross-links, maintaining tissue-like behavior (J-shaped stress–strain curve). Regardless of the cross-links, the pMEA-based elastomers exhibit low platelet adhesion properties (approximately 3% platelet adherence) compared with those of poly(ethylene terephthalate), which is one of the commercialized materials for artificial blood vessels. Contact angle measurements imply a shift of supramolecular cross-links in response to the surrounding environment. When immersed in water, hydrophobic supramolecular cross-links are buried within the interior of the materials, thereby exposing pMEA chains to the aqueous environment; this is why supramolecular cross-links do not affect the platelet adhesion properties. In addition, the elastomers exhibit stable adhesion to human umbilical vein endothelial cells. This report shows the potential of combining supramolecular cross-links and pMEA. The Royal Society of Chemistry 2022-09-30 /pmc/articles/PMC9523658/ /pubmed/36320244 http://dx.doi.org/10.1039/d2ra04885j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Park, Junsu Ueda, Tomoya Kawai, Yusaku Araki, Kumiko Kido, Makiko Kure, Bunsho Takenaka, Naomi Takashima, Yoshinori Tanaka, Masaru Simultaneous control of the mechanical properties and adhesion of human umbilical vein endothelial cells to suppress platelet adhesion on a supramolecular substrate |
title | Simultaneous control of the mechanical properties and adhesion of human umbilical vein endothelial cells to suppress platelet adhesion on a supramolecular substrate |
title_full | Simultaneous control of the mechanical properties and adhesion of human umbilical vein endothelial cells to suppress platelet adhesion on a supramolecular substrate |
title_fullStr | Simultaneous control of the mechanical properties and adhesion of human umbilical vein endothelial cells to suppress platelet adhesion on a supramolecular substrate |
title_full_unstemmed | Simultaneous control of the mechanical properties and adhesion of human umbilical vein endothelial cells to suppress platelet adhesion on a supramolecular substrate |
title_short | Simultaneous control of the mechanical properties and adhesion of human umbilical vein endothelial cells to suppress platelet adhesion on a supramolecular substrate |
title_sort | simultaneous control of the mechanical properties and adhesion of human umbilical vein endothelial cells to suppress platelet adhesion on a supramolecular substrate |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9523658/ https://www.ncbi.nlm.nih.gov/pubmed/36320244 http://dx.doi.org/10.1039/d2ra04885j |
work_keys_str_mv | AT parkjunsu simultaneouscontrolofthemechanicalpropertiesandadhesionofhumanumbilicalveinendothelialcellstosuppressplateletadhesiononasupramolecularsubstrate AT uedatomoya simultaneouscontrolofthemechanicalpropertiesandadhesionofhumanumbilicalveinendothelialcellstosuppressplateletadhesiononasupramolecularsubstrate AT kawaiyusaku simultaneouscontrolofthemechanicalpropertiesandadhesionofhumanumbilicalveinendothelialcellstosuppressplateletadhesiononasupramolecularsubstrate AT arakikumiko simultaneouscontrolofthemechanicalpropertiesandadhesionofhumanumbilicalveinendothelialcellstosuppressplateletadhesiononasupramolecularsubstrate AT kidomakiko simultaneouscontrolofthemechanicalpropertiesandadhesionofhumanumbilicalveinendothelialcellstosuppressplateletadhesiononasupramolecularsubstrate AT kurebunsho simultaneouscontrolofthemechanicalpropertiesandadhesionofhumanumbilicalveinendothelialcellstosuppressplateletadhesiononasupramolecularsubstrate AT takenakanaomi simultaneouscontrolofthemechanicalpropertiesandadhesionofhumanumbilicalveinendothelialcellstosuppressplateletadhesiononasupramolecularsubstrate AT takashimayoshinori simultaneouscontrolofthemechanicalpropertiesandadhesionofhumanumbilicalveinendothelialcellstosuppressplateletadhesiononasupramolecularsubstrate AT tanakamasaru simultaneouscontrolofthemechanicalpropertiesandadhesionofhumanumbilicalveinendothelialcellstosuppressplateletadhesiononasupramolecularsubstrate |