Cargando…

Simultaneous control of the mechanical properties and adhesion of human umbilical vein endothelial cells to suppress platelet adhesion on a supramolecular substrate

The demand for artificial blood vessels to treat vascular disease will continue to increase in the future. To expand the application of blood-compatible poly(2-methoxyethyl acrylate) (pMEA) to artificial blood vessels, control of the mechanical properties of pMEA is established using supramolecular...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Junsu, Ueda, Tomoya, Kawai, Yusaku, Araki, Kumiko, Kido, Makiko, Kure, Bunsho, Takenaka, Naomi, Takashima, Yoshinori, Tanaka, Masaru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9523658/
https://www.ncbi.nlm.nih.gov/pubmed/36320244
http://dx.doi.org/10.1039/d2ra04885j
_version_ 1784800337475928064
author Park, Junsu
Ueda, Tomoya
Kawai, Yusaku
Araki, Kumiko
Kido, Makiko
Kure, Bunsho
Takenaka, Naomi
Takashima, Yoshinori
Tanaka, Masaru
author_facet Park, Junsu
Ueda, Tomoya
Kawai, Yusaku
Araki, Kumiko
Kido, Makiko
Kure, Bunsho
Takenaka, Naomi
Takashima, Yoshinori
Tanaka, Masaru
author_sort Park, Junsu
collection PubMed
description The demand for artificial blood vessels to treat vascular disease will continue to increase in the future. To expand the application of blood-compatible poly(2-methoxyethyl acrylate) (pMEA) to artificial blood vessels, control of the mechanical properties of pMEA is established using supramolecular cross-links based on inclusion complexation of acetylated cyclodextrin. The mechanical properties, such as Young's modulus and toughness, of these pMEA-based elastomers change with the amount of cross-links, maintaining tissue-like behavior (J-shaped stress–strain curve). Regardless of the cross-links, the pMEA-based elastomers exhibit low platelet adhesion properties (approximately 3% platelet adherence) compared with those of poly(ethylene terephthalate), which is one of the commercialized materials for artificial blood vessels. Contact angle measurements imply a shift of supramolecular cross-links in response to the surrounding environment. When immersed in water, hydrophobic supramolecular cross-links are buried within the interior of the materials, thereby exposing pMEA chains to the aqueous environment; this is why supramolecular cross-links do not affect the platelet adhesion properties. In addition, the elastomers exhibit stable adhesion to human umbilical vein endothelial cells. This report shows the potential of combining supramolecular cross-links and pMEA.
format Online
Article
Text
id pubmed-9523658
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-95236582022-10-31 Simultaneous control of the mechanical properties and adhesion of human umbilical vein endothelial cells to suppress platelet adhesion on a supramolecular substrate Park, Junsu Ueda, Tomoya Kawai, Yusaku Araki, Kumiko Kido, Makiko Kure, Bunsho Takenaka, Naomi Takashima, Yoshinori Tanaka, Masaru RSC Adv Chemistry The demand for artificial blood vessels to treat vascular disease will continue to increase in the future. To expand the application of blood-compatible poly(2-methoxyethyl acrylate) (pMEA) to artificial blood vessels, control of the mechanical properties of pMEA is established using supramolecular cross-links based on inclusion complexation of acetylated cyclodextrin. The mechanical properties, such as Young's modulus and toughness, of these pMEA-based elastomers change with the amount of cross-links, maintaining tissue-like behavior (J-shaped stress–strain curve). Regardless of the cross-links, the pMEA-based elastomers exhibit low platelet adhesion properties (approximately 3% platelet adherence) compared with those of poly(ethylene terephthalate), which is one of the commercialized materials for artificial blood vessels. Contact angle measurements imply a shift of supramolecular cross-links in response to the surrounding environment. When immersed in water, hydrophobic supramolecular cross-links are buried within the interior of the materials, thereby exposing pMEA chains to the aqueous environment; this is why supramolecular cross-links do not affect the platelet adhesion properties. In addition, the elastomers exhibit stable adhesion to human umbilical vein endothelial cells. This report shows the potential of combining supramolecular cross-links and pMEA. The Royal Society of Chemistry 2022-09-30 /pmc/articles/PMC9523658/ /pubmed/36320244 http://dx.doi.org/10.1039/d2ra04885j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Park, Junsu
Ueda, Tomoya
Kawai, Yusaku
Araki, Kumiko
Kido, Makiko
Kure, Bunsho
Takenaka, Naomi
Takashima, Yoshinori
Tanaka, Masaru
Simultaneous control of the mechanical properties and adhesion of human umbilical vein endothelial cells to suppress platelet adhesion on a supramolecular substrate
title Simultaneous control of the mechanical properties and adhesion of human umbilical vein endothelial cells to suppress platelet adhesion on a supramolecular substrate
title_full Simultaneous control of the mechanical properties and adhesion of human umbilical vein endothelial cells to suppress platelet adhesion on a supramolecular substrate
title_fullStr Simultaneous control of the mechanical properties and adhesion of human umbilical vein endothelial cells to suppress platelet adhesion on a supramolecular substrate
title_full_unstemmed Simultaneous control of the mechanical properties and adhesion of human umbilical vein endothelial cells to suppress platelet adhesion on a supramolecular substrate
title_short Simultaneous control of the mechanical properties and adhesion of human umbilical vein endothelial cells to suppress platelet adhesion on a supramolecular substrate
title_sort simultaneous control of the mechanical properties and adhesion of human umbilical vein endothelial cells to suppress platelet adhesion on a supramolecular substrate
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9523658/
https://www.ncbi.nlm.nih.gov/pubmed/36320244
http://dx.doi.org/10.1039/d2ra04885j
work_keys_str_mv AT parkjunsu simultaneouscontrolofthemechanicalpropertiesandadhesionofhumanumbilicalveinendothelialcellstosuppressplateletadhesiononasupramolecularsubstrate
AT uedatomoya simultaneouscontrolofthemechanicalpropertiesandadhesionofhumanumbilicalveinendothelialcellstosuppressplateletadhesiononasupramolecularsubstrate
AT kawaiyusaku simultaneouscontrolofthemechanicalpropertiesandadhesionofhumanumbilicalveinendothelialcellstosuppressplateletadhesiononasupramolecularsubstrate
AT arakikumiko simultaneouscontrolofthemechanicalpropertiesandadhesionofhumanumbilicalveinendothelialcellstosuppressplateletadhesiononasupramolecularsubstrate
AT kidomakiko simultaneouscontrolofthemechanicalpropertiesandadhesionofhumanumbilicalveinendothelialcellstosuppressplateletadhesiononasupramolecularsubstrate
AT kurebunsho simultaneouscontrolofthemechanicalpropertiesandadhesionofhumanumbilicalveinendothelialcellstosuppressplateletadhesiononasupramolecularsubstrate
AT takenakanaomi simultaneouscontrolofthemechanicalpropertiesandadhesionofhumanumbilicalveinendothelialcellstosuppressplateletadhesiononasupramolecularsubstrate
AT takashimayoshinori simultaneouscontrolofthemechanicalpropertiesandadhesionofhumanumbilicalveinendothelialcellstosuppressplateletadhesiononasupramolecularsubstrate
AT tanakamasaru simultaneouscontrolofthemechanicalpropertiesandadhesionofhumanumbilicalveinendothelialcellstosuppressplateletadhesiononasupramolecularsubstrate