Cargando…
Multi-omics Data Integration Model Based on UMAP Embedding and Convolutional Neural Network
INTRODUCTION: Multi-omics data integration facilitates collecting richer understanding and perceptions than separate omics data. Various promising integrative approaches have been utilized to analyze multi-omics data for biomedical applications, including disease prediction and disease subtypes, bio...
Autores principales: | ElKarami, Bashier, Alkhateeb, Abedalrhman, Qattous, Hazem, Alshomali, Lujain, Shahrrava, Behnam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9523837/ https://www.ncbi.nlm.nih.gov/pubmed/36187912 http://dx.doi.org/10.1177/11769351221124205 |
Ejemplares similares
-
Prostate cancer bioinformatics analysis: emerging genomic profiling techniques
por: Alkhateeb, Abedalrhman, et al.
Publicado: (2023) -
BRAQUE: Bayesian Reduction for Amplified Quantization in UMAP Embedding
por: Dall’Olio, Lorenzo, et al.
Publicado: (2023) -
A generalization of t-SNE and UMAP to single-cell multimodal omics
por: Do, Van Hoan, et al.
Publicado: (2021) -
Classification of Breast Cancer Nottingham Prognostic Index Using High-Dimensional Embedding and Residual Neural Network
por: Zhou, Li, et al.
Publicado: (2022) -
Fuzzy Information Discrimination Measures and Their Application to Low Dimensional Embedding Construction in the UMAP Algorithm
por: Demidova, Liliya A., et al.
Publicado: (2022)