Cargando…
Dynamic feature learning for COVID-19 segmentation and classification
Since December 2019, coronavirus SARS-CoV-2 (COVID-19) has rapidly developed into a global epidemic, with millions of patients affected worldwide. As part of the diagnostic pathway, computed tomography (CT) scans are used to help patient management. However, parenchymal imaging findings in COVID-19...
Autores principales: | Zhang, Xiaoqin, Jiang, Runhua, Huang, Pengcheng, Wang, Tao, Hu, Mingjun, Scarsbrook, Andrew F., Frangi, Alejandro F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9523910/ https://www.ncbi.nlm.nih.gov/pubmed/36240599 http://dx.doi.org/10.1016/j.compbiomed.2022.106136 |
Ejemplares similares
-
Utility of pre-treatment FDG PET/CT–derived machine learning models for outcome prediction in classical Hodgkin lymphoma
por: Frood, Russell, et al.
Publicado: (2022) -
Discovery of Pre-Treatment FDG PET/CT-Derived Radiomics-Based Models for Predicting Outcome in Diffuse Large B-Cell Lymphoma
por: Frood, Russell, et al.
Publicado: (2022) -
Baseline PET/CT imaging parameters for prediction of treatment outcome in Hodgkin and diffuse large B cell lymphoma: a systematic review
por: Frood, R., et al.
Publicado: (2021) -
A review of heart chamber segmentation for structural and functional analysis using cardiac magnetic resonance imaging
por: Peng, Peng, et al.
Publicado: (2016) -
A Heart Segmentation Algorithm Based on Dynamic Ultrasound
por: Tian, Mingjun, et al.
Publicado: (2022)