Cargando…

Aspergillus flavus YRB2 from Thymelaea hirsuta (L.) Endl., a non-aflatoxigenic endophyte with ability to overexpress defense-related genes against Fusarium root rot of maize

Fusarium root rot, caused by Fusarium solani (Mart.) Sacc., represents one of the most damaging diseases of maize affecting plant growth and yield. In this study, the antagonistic potential of a non-aflatoxigenic endophytic Aspergillus flavus YRB2, isolated from Thymelaea hirsuta (L.) Endl., was tes...

Descripción completa

Detalles Bibliográficos
Autores principales: Rashad, Younes M., Abdalla, Sara A., Shehata, Ahmed S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9524039/
https://www.ncbi.nlm.nih.gov/pubmed/36175855
http://dx.doi.org/10.1186/s12866-022-02651-6
_version_ 1784800419401170944
author Rashad, Younes M.
Abdalla, Sara A.
Shehata, Ahmed S.
author_facet Rashad, Younes M.
Abdalla, Sara A.
Shehata, Ahmed S.
author_sort Rashad, Younes M.
collection PubMed
description Fusarium root rot, caused by Fusarium solani (Mart.) Sacc., represents one of the most damaging diseases of maize affecting plant growth and yield. In this study, the antagonistic potential of a non-aflatoxigenic endophytic Aspergillus flavus YRB2, isolated from Thymelaea hirsuta (L.) Endl., was tested against F. solani in vitro. In addition, its biocontrol activity against Fusarium root rot of maize was evaluated under greenhouse conditions. Its impacts on plant molecular, pathological, physiological, and growth levels were also studied. Results obtained revealed a potent antagonistic behavior for A. flavus YRB2 against F. solani in vitro, recording 80% growth inhibition. Seventeen secondary metabolites were detected in the n-hexane extract of A. flavus YRB2 filtered culture broth using GC-MS analysis. Among them, various antifungal secondary metabolites were produced, namely palmitic acid, α-linolenic acid, stearic acid, 2, 4-di-tert-butylphenol, diisobutyl phthalate, and heneicosane. In contrast, HPLC analysis showed that no aflatoxins (B1, B2, G1, and G2) were detected. Under greenhouse conditions, colonization of maize plants with A. flavus YRB2 exhibited a potential biocontrol activity against Fusarium root rot, recording 73.4% reduction in the disease severity. Triggering of transcriptional expression level of the defense-related genes JERF3 (7.2-fold), CHI II (8-fold), and POD (9.1-fold) was reported, indicating the inducing effect on the plant immunity. In addition, an increment in the antioxidant enzymes POD and PPO, and the total phenolic content in maize roots was also observed in response to this treatment. Moreover, a growth-promoting effect was also observed for colonization of maize plants with A. flavus YRB2. Based on the obtained data, we can conclude that A. flavus YRB2 may represent a promising biocontrol and growth-promoting agent for maize plants against Fusarium root rot. Nevertheless, field evaluation is highly requested before the use recommendation.
format Online
Article
Text
id pubmed-9524039
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-95240392022-10-01 Aspergillus flavus YRB2 from Thymelaea hirsuta (L.) Endl., a non-aflatoxigenic endophyte with ability to overexpress defense-related genes against Fusarium root rot of maize Rashad, Younes M. Abdalla, Sara A. Shehata, Ahmed S. BMC Microbiol Research Fusarium root rot, caused by Fusarium solani (Mart.) Sacc., represents one of the most damaging diseases of maize affecting plant growth and yield. In this study, the antagonistic potential of a non-aflatoxigenic endophytic Aspergillus flavus YRB2, isolated from Thymelaea hirsuta (L.) Endl., was tested against F. solani in vitro. In addition, its biocontrol activity against Fusarium root rot of maize was evaluated under greenhouse conditions. Its impacts on plant molecular, pathological, physiological, and growth levels were also studied. Results obtained revealed a potent antagonistic behavior for A. flavus YRB2 against F. solani in vitro, recording 80% growth inhibition. Seventeen secondary metabolites were detected in the n-hexane extract of A. flavus YRB2 filtered culture broth using GC-MS analysis. Among them, various antifungal secondary metabolites were produced, namely palmitic acid, α-linolenic acid, stearic acid, 2, 4-di-tert-butylphenol, diisobutyl phthalate, and heneicosane. In contrast, HPLC analysis showed that no aflatoxins (B1, B2, G1, and G2) were detected. Under greenhouse conditions, colonization of maize plants with A. flavus YRB2 exhibited a potential biocontrol activity against Fusarium root rot, recording 73.4% reduction in the disease severity. Triggering of transcriptional expression level of the defense-related genes JERF3 (7.2-fold), CHI II (8-fold), and POD (9.1-fold) was reported, indicating the inducing effect on the plant immunity. In addition, an increment in the antioxidant enzymes POD and PPO, and the total phenolic content in maize roots was also observed in response to this treatment. Moreover, a growth-promoting effect was also observed for colonization of maize plants with A. flavus YRB2. Based on the obtained data, we can conclude that A. flavus YRB2 may represent a promising biocontrol and growth-promoting agent for maize plants against Fusarium root rot. Nevertheless, field evaluation is highly requested before the use recommendation. BioMed Central 2022-09-30 /pmc/articles/PMC9524039/ /pubmed/36175855 http://dx.doi.org/10.1186/s12866-022-02651-6 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Rashad, Younes M.
Abdalla, Sara A.
Shehata, Ahmed S.
Aspergillus flavus YRB2 from Thymelaea hirsuta (L.) Endl., a non-aflatoxigenic endophyte with ability to overexpress defense-related genes against Fusarium root rot of maize
title Aspergillus flavus YRB2 from Thymelaea hirsuta (L.) Endl., a non-aflatoxigenic endophyte with ability to overexpress defense-related genes against Fusarium root rot of maize
title_full Aspergillus flavus YRB2 from Thymelaea hirsuta (L.) Endl., a non-aflatoxigenic endophyte with ability to overexpress defense-related genes against Fusarium root rot of maize
title_fullStr Aspergillus flavus YRB2 from Thymelaea hirsuta (L.) Endl., a non-aflatoxigenic endophyte with ability to overexpress defense-related genes against Fusarium root rot of maize
title_full_unstemmed Aspergillus flavus YRB2 from Thymelaea hirsuta (L.) Endl., a non-aflatoxigenic endophyte with ability to overexpress defense-related genes against Fusarium root rot of maize
title_short Aspergillus flavus YRB2 from Thymelaea hirsuta (L.) Endl., a non-aflatoxigenic endophyte with ability to overexpress defense-related genes against Fusarium root rot of maize
title_sort aspergillus flavus yrb2 from thymelaea hirsuta (l.) endl., a non-aflatoxigenic endophyte with ability to overexpress defense-related genes against fusarium root rot of maize
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9524039/
https://www.ncbi.nlm.nih.gov/pubmed/36175855
http://dx.doi.org/10.1186/s12866-022-02651-6
work_keys_str_mv AT rashadyounesm aspergillusflavusyrb2fromthymelaeahirsutalendlanonaflatoxigenicendophytewithabilitytooverexpressdefenserelatedgenesagainstfusariumrootrotofmaize
AT abdallasaraa aspergillusflavusyrb2fromthymelaeahirsutalendlanonaflatoxigenicendophytewithabilitytooverexpressdefenserelatedgenesagainstfusariumrootrotofmaize
AT shehataahmeds aspergillusflavusyrb2fromthymelaeahirsutalendlanonaflatoxigenicendophytewithabilitytooverexpressdefenserelatedgenesagainstfusariumrootrotofmaize