Cargando…
A ubiquitous amino acid source for prokaryotic and eukaryotic cell-free transcription-translation systems
Cell-free gene expression (CFE) systems are an attractive tool for engineering within synthetic biology and for industrial production of high-value recombinant proteins. CFE reactions require a cell extract, energy system, amino acids, and DNA, to catalyse mRNA transcription and protein synthesis. T...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9524191/ https://www.ncbi.nlm.nih.gov/pubmed/36185432 http://dx.doi.org/10.3389/fbioe.2022.992708 |
_version_ | 1784800452954554368 |
---|---|
author | Nagappa, Lakshmeesha K. Sato, Wakana Alam, Farzana Chengan, Kameshwari Smales, Christopher M. Von Der Haar, Tobias Polizzi, Karen M. Adamala, Katarzyna P. Moore, Simon J. |
author_facet | Nagappa, Lakshmeesha K. Sato, Wakana Alam, Farzana Chengan, Kameshwari Smales, Christopher M. Von Der Haar, Tobias Polizzi, Karen M. Adamala, Katarzyna P. Moore, Simon J. |
author_sort | Nagappa, Lakshmeesha K. |
collection | PubMed |
description | Cell-free gene expression (CFE) systems are an attractive tool for engineering within synthetic biology and for industrial production of high-value recombinant proteins. CFE reactions require a cell extract, energy system, amino acids, and DNA, to catalyse mRNA transcription and protein synthesis. To provide an amino acid source, CFE systems typically use a commercial standard, which is often proprietary. Herein we show that a range of common microbiology rich media (i.e., tryptone, peptone, yeast extract and casamino acids) unexpectedly provide an effective and low-cost amino acid source. We show that this approach is generalisable, by comparing batch variability and protein production in the following range of CFE systems: Escherichia coli (Rosetta(™) 2 (DE3), BL21(DE3)), Streptomyces venezuelae and Pichia pastoris. In all CFE systems, we show equivalent or increased protein synthesis capacity upon replacement of the commercial amino acid source. In conclusion, we suggest rich microbiology media provides a new amino acid source for CFE systems with potential broad use in synthetic biology and industrial biotechnology applications. |
format | Online Article Text |
id | pubmed-9524191 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-95241912022-10-01 A ubiquitous amino acid source for prokaryotic and eukaryotic cell-free transcription-translation systems Nagappa, Lakshmeesha K. Sato, Wakana Alam, Farzana Chengan, Kameshwari Smales, Christopher M. Von Der Haar, Tobias Polizzi, Karen M. Adamala, Katarzyna P. Moore, Simon J. Front Bioeng Biotechnol Bioengineering and Biotechnology Cell-free gene expression (CFE) systems are an attractive tool for engineering within synthetic biology and for industrial production of high-value recombinant proteins. CFE reactions require a cell extract, energy system, amino acids, and DNA, to catalyse mRNA transcription and protein synthesis. To provide an amino acid source, CFE systems typically use a commercial standard, which is often proprietary. Herein we show that a range of common microbiology rich media (i.e., tryptone, peptone, yeast extract and casamino acids) unexpectedly provide an effective and low-cost amino acid source. We show that this approach is generalisable, by comparing batch variability and protein production in the following range of CFE systems: Escherichia coli (Rosetta(™) 2 (DE3), BL21(DE3)), Streptomyces venezuelae and Pichia pastoris. In all CFE systems, we show equivalent or increased protein synthesis capacity upon replacement of the commercial amino acid source. In conclusion, we suggest rich microbiology media provides a new amino acid source for CFE systems with potential broad use in synthetic biology and industrial biotechnology applications. Frontiers Media S.A. 2022-09-16 /pmc/articles/PMC9524191/ /pubmed/36185432 http://dx.doi.org/10.3389/fbioe.2022.992708 Text en Copyright © 2022 Nagappa, Sato, Alam, Chengan, Smales, Von Der Haar, Polizzi, Adamala and Moore. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Bioengineering and Biotechnology Nagappa, Lakshmeesha K. Sato, Wakana Alam, Farzana Chengan, Kameshwari Smales, Christopher M. Von Der Haar, Tobias Polizzi, Karen M. Adamala, Katarzyna P. Moore, Simon J. A ubiquitous amino acid source for prokaryotic and eukaryotic cell-free transcription-translation systems |
title | A ubiquitous amino acid source for prokaryotic and eukaryotic cell-free transcription-translation systems |
title_full | A ubiquitous amino acid source for prokaryotic and eukaryotic cell-free transcription-translation systems |
title_fullStr | A ubiquitous amino acid source for prokaryotic and eukaryotic cell-free transcription-translation systems |
title_full_unstemmed | A ubiquitous amino acid source for prokaryotic and eukaryotic cell-free transcription-translation systems |
title_short | A ubiquitous amino acid source for prokaryotic and eukaryotic cell-free transcription-translation systems |
title_sort | ubiquitous amino acid source for prokaryotic and eukaryotic cell-free transcription-translation systems |
topic | Bioengineering and Biotechnology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9524191/ https://www.ncbi.nlm.nih.gov/pubmed/36185432 http://dx.doi.org/10.3389/fbioe.2022.992708 |
work_keys_str_mv | AT nagappalakshmeeshak aubiquitousaminoacidsourceforprokaryoticandeukaryoticcellfreetranscriptiontranslationsystems AT satowakana aubiquitousaminoacidsourceforprokaryoticandeukaryoticcellfreetranscriptiontranslationsystems AT alamfarzana aubiquitousaminoacidsourceforprokaryoticandeukaryoticcellfreetranscriptiontranslationsystems AT chengankameshwari aubiquitousaminoacidsourceforprokaryoticandeukaryoticcellfreetranscriptiontranslationsystems AT smaleschristopherm aubiquitousaminoacidsourceforprokaryoticandeukaryoticcellfreetranscriptiontranslationsystems AT vonderhaartobias aubiquitousaminoacidsourceforprokaryoticandeukaryoticcellfreetranscriptiontranslationsystems AT polizzikarenm aubiquitousaminoacidsourceforprokaryoticandeukaryoticcellfreetranscriptiontranslationsystems AT adamalakatarzynap aubiquitousaminoacidsourceforprokaryoticandeukaryoticcellfreetranscriptiontranslationsystems AT mooresimonj aubiquitousaminoacidsourceforprokaryoticandeukaryoticcellfreetranscriptiontranslationsystems AT nagappalakshmeeshak ubiquitousaminoacidsourceforprokaryoticandeukaryoticcellfreetranscriptiontranslationsystems AT satowakana ubiquitousaminoacidsourceforprokaryoticandeukaryoticcellfreetranscriptiontranslationsystems AT alamfarzana ubiquitousaminoacidsourceforprokaryoticandeukaryoticcellfreetranscriptiontranslationsystems AT chengankameshwari ubiquitousaminoacidsourceforprokaryoticandeukaryoticcellfreetranscriptiontranslationsystems AT smaleschristopherm ubiquitousaminoacidsourceforprokaryoticandeukaryoticcellfreetranscriptiontranslationsystems AT vonderhaartobias ubiquitousaminoacidsourceforprokaryoticandeukaryoticcellfreetranscriptiontranslationsystems AT polizzikarenm ubiquitousaminoacidsourceforprokaryoticandeukaryoticcellfreetranscriptiontranslationsystems AT adamalakatarzynap ubiquitousaminoacidsourceforprokaryoticandeukaryoticcellfreetranscriptiontranslationsystems AT mooresimonj ubiquitousaminoacidsourceforprokaryoticandeukaryoticcellfreetranscriptiontranslationsystems |