Cargando…
Intelligent diagnosis of resistance variant multiple fault locations of mine ventilation system based on ML-KNN
The resistance variant faults (RVFs) observed in the mine ventilation system can utterly restrict mine safety production. Herein, a machine learning model, which is based on multi-label k-nearest neighbor (ML-KNN), is proposed to solve the problem of the rapid and accurate diagnosis of the RVFs that...
Autores principales: | Wang, Dong, Liu, Jian, Deng, Lijun, Wang, Honglin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9524657/ https://www.ncbi.nlm.nih.gov/pubmed/36178952 http://dx.doi.org/10.1371/journal.pone.0275437 |
Ejemplares similares
-
Intelligent ZHENG Classification of Hypertension Depending on ML-kNN and Information Fusion
por: Li, Guo-Zheng, et al.
Publicado: (2012) -
A supervised diagnostic experiment of resistance variable multifault locations in a mine ventilation system
por: Wang, Dong, et al.
Publicado: (2023) -
Fault Detection Using the Clustering-kNN Rule for Gas Sensor Arrays
por: Yang, Jingli, et al.
Publicado: (2016) -
An Advanced Rider-Cornering-Assistance System for PTW Vehicles Developed Using ML KNN Method
por: Jalti, Fakhreddine, et al.
Publicado: (2023) -
Intelligent Early Fault Diagnosis of Space Flywheel Rotor System
por: Liao, Hui, et al.
Publicado: (2023)