Cargando…
Ca(2+) channels couple spiking to mitochondrial metabolism in substantia nigra dopaminergic neurons
How do neurons match generation of adenosine triphosphate by mitochondria to the bioenergetic demands of regenerative activity? Although the subject of speculation, this coupling is still poorly understood, particularly in neurons that are tonically active. To help fill this gap, pacemaking substant...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9524841/ https://www.ncbi.nlm.nih.gov/pubmed/36179023 http://dx.doi.org/10.1126/sciadv.abp8701 |
_version_ | 1784800577920696320 |
---|---|
author | Zampese, Enrico Wokosin, David L. Gonzalez-Rodriguez, Patricia Guzman, Jaime N. Tkatch, Tatiana Kondapalli, Jyothisri Surmeier, William C. D’Alessandro, Karis B. De Stefani, Diego Rizzuto, Rosario Iino, Masamitsu Molkentin, Jeffery D. Chandel, Navdeep S. Schumacker, Paul T. Surmeier, D. James |
author_facet | Zampese, Enrico Wokosin, David L. Gonzalez-Rodriguez, Patricia Guzman, Jaime N. Tkatch, Tatiana Kondapalli, Jyothisri Surmeier, William C. D’Alessandro, Karis B. De Stefani, Diego Rizzuto, Rosario Iino, Masamitsu Molkentin, Jeffery D. Chandel, Navdeep S. Schumacker, Paul T. Surmeier, D. James |
author_sort | Zampese, Enrico |
collection | PubMed |
description | How do neurons match generation of adenosine triphosphate by mitochondria to the bioenergetic demands of regenerative activity? Although the subject of speculation, this coupling is still poorly understood, particularly in neurons that are tonically active. To help fill this gap, pacemaking substantia nigra dopaminergic neurons were studied using a combination of optical, electrophysiological, and molecular approaches. In these neurons, spike-activated calcium (Ca(2+)) entry through Ca(v)1 channels triggered Ca(2+) release from the endoplasmic reticulum, which stimulated mitochondrial oxidative phosphorylation through two complementary Ca(2+)-dependent mechanisms: one mediated by the mitochondrial uniporter and another by the malate-aspartate shuttle. Disrupting either mechanism impaired the ability of dopaminergic neurons to sustain spike activity. While this feedforward control helps dopaminergic neurons meet the bioenergetic demands associated with sustained spiking, it is also responsible for their elevated oxidant stress and possibly to their decline with aging and disease. |
format | Online Article Text |
id | pubmed-9524841 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-95248412022-10-13 Ca(2+) channels couple spiking to mitochondrial metabolism in substantia nigra dopaminergic neurons Zampese, Enrico Wokosin, David L. Gonzalez-Rodriguez, Patricia Guzman, Jaime N. Tkatch, Tatiana Kondapalli, Jyothisri Surmeier, William C. D’Alessandro, Karis B. De Stefani, Diego Rizzuto, Rosario Iino, Masamitsu Molkentin, Jeffery D. Chandel, Navdeep S. Schumacker, Paul T. Surmeier, D. James Sci Adv Neuroscience How do neurons match generation of adenosine triphosphate by mitochondria to the bioenergetic demands of regenerative activity? Although the subject of speculation, this coupling is still poorly understood, particularly in neurons that are tonically active. To help fill this gap, pacemaking substantia nigra dopaminergic neurons were studied using a combination of optical, electrophysiological, and molecular approaches. In these neurons, spike-activated calcium (Ca(2+)) entry through Ca(v)1 channels triggered Ca(2+) release from the endoplasmic reticulum, which stimulated mitochondrial oxidative phosphorylation through two complementary Ca(2+)-dependent mechanisms: one mediated by the mitochondrial uniporter and another by the malate-aspartate shuttle. Disrupting either mechanism impaired the ability of dopaminergic neurons to sustain spike activity. While this feedforward control helps dopaminergic neurons meet the bioenergetic demands associated with sustained spiking, it is also responsible for their elevated oxidant stress and possibly to their decline with aging and disease. American Association for the Advancement of Science 2022-09-30 /pmc/articles/PMC9524841/ /pubmed/36179023 http://dx.doi.org/10.1126/sciadv.abp8701 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Neuroscience Zampese, Enrico Wokosin, David L. Gonzalez-Rodriguez, Patricia Guzman, Jaime N. Tkatch, Tatiana Kondapalli, Jyothisri Surmeier, William C. D’Alessandro, Karis B. De Stefani, Diego Rizzuto, Rosario Iino, Masamitsu Molkentin, Jeffery D. Chandel, Navdeep S. Schumacker, Paul T. Surmeier, D. James Ca(2+) channels couple spiking to mitochondrial metabolism in substantia nigra dopaminergic neurons |
title | Ca(2+) channels couple spiking to mitochondrial metabolism in substantia nigra dopaminergic neurons |
title_full | Ca(2+) channels couple spiking to mitochondrial metabolism in substantia nigra dopaminergic neurons |
title_fullStr | Ca(2+) channels couple spiking to mitochondrial metabolism in substantia nigra dopaminergic neurons |
title_full_unstemmed | Ca(2+) channels couple spiking to mitochondrial metabolism in substantia nigra dopaminergic neurons |
title_short | Ca(2+) channels couple spiking to mitochondrial metabolism in substantia nigra dopaminergic neurons |
title_sort | ca(2+) channels couple spiking to mitochondrial metabolism in substantia nigra dopaminergic neurons |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9524841/ https://www.ncbi.nlm.nih.gov/pubmed/36179023 http://dx.doi.org/10.1126/sciadv.abp8701 |
work_keys_str_mv | AT zampeseenrico ca2channelscouplespikingtomitochondrialmetabolisminsubstantianigradopaminergicneurons AT wokosindavidl ca2channelscouplespikingtomitochondrialmetabolisminsubstantianigradopaminergicneurons AT gonzalezrodriguezpatricia ca2channelscouplespikingtomitochondrialmetabolisminsubstantianigradopaminergicneurons AT guzmanjaimen ca2channelscouplespikingtomitochondrialmetabolisminsubstantianigradopaminergicneurons AT tkatchtatiana ca2channelscouplespikingtomitochondrialmetabolisminsubstantianigradopaminergicneurons AT kondapallijyothisri ca2channelscouplespikingtomitochondrialmetabolisminsubstantianigradopaminergicneurons AT surmeierwilliamc ca2channelscouplespikingtomitochondrialmetabolisminsubstantianigradopaminergicneurons AT dalessandrokarisb ca2channelscouplespikingtomitochondrialmetabolisminsubstantianigradopaminergicneurons AT destefanidiego ca2channelscouplespikingtomitochondrialmetabolisminsubstantianigradopaminergicneurons AT rizzutorosario ca2channelscouplespikingtomitochondrialmetabolisminsubstantianigradopaminergicneurons AT iinomasamitsu ca2channelscouplespikingtomitochondrialmetabolisminsubstantianigradopaminergicneurons AT molkentinjefferyd ca2channelscouplespikingtomitochondrialmetabolisminsubstantianigradopaminergicneurons AT chandelnavdeeps ca2channelscouplespikingtomitochondrialmetabolisminsubstantianigradopaminergicneurons AT schumackerpault ca2channelscouplespikingtomitochondrialmetabolisminsubstantianigradopaminergicneurons AT surmeierdjames ca2channelscouplespikingtomitochondrialmetabolisminsubstantianigradopaminergicneurons |