Cargando…

Ca(2+) channels couple spiking to mitochondrial metabolism in substantia nigra dopaminergic neurons

How do neurons match generation of adenosine triphosphate by mitochondria to the bioenergetic demands of regenerative activity? Although the subject of speculation, this coupling is still poorly understood, particularly in neurons that are tonically active. To help fill this gap, pacemaking substant...

Descripción completa

Detalles Bibliográficos
Autores principales: Zampese, Enrico, Wokosin, David L., Gonzalez-Rodriguez, Patricia, Guzman, Jaime N., Tkatch, Tatiana, Kondapalli, Jyothisri, Surmeier, William C., D’Alessandro, Karis B., De Stefani, Diego, Rizzuto, Rosario, Iino, Masamitsu, Molkentin, Jeffery D., Chandel, Navdeep S., Schumacker, Paul T., Surmeier, D. James
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9524841/
https://www.ncbi.nlm.nih.gov/pubmed/36179023
http://dx.doi.org/10.1126/sciadv.abp8701
_version_ 1784800577920696320
author Zampese, Enrico
Wokosin, David L.
Gonzalez-Rodriguez, Patricia
Guzman, Jaime N.
Tkatch, Tatiana
Kondapalli, Jyothisri
Surmeier, William C.
D’Alessandro, Karis B.
De Stefani, Diego
Rizzuto, Rosario
Iino, Masamitsu
Molkentin, Jeffery D.
Chandel, Navdeep S.
Schumacker, Paul T.
Surmeier, D. James
author_facet Zampese, Enrico
Wokosin, David L.
Gonzalez-Rodriguez, Patricia
Guzman, Jaime N.
Tkatch, Tatiana
Kondapalli, Jyothisri
Surmeier, William C.
D’Alessandro, Karis B.
De Stefani, Diego
Rizzuto, Rosario
Iino, Masamitsu
Molkentin, Jeffery D.
Chandel, Navdeep S.
Schumacker, Paul T.
Surmeier, D. James
author_sort Zampese, Enrico
collection PubMed
description How do neurons match generation of adenosine triphosphate by mitochondria to the bioenergetic demands of regenerative activity? Although the subject of speculation, this coupling is still poorly understood, particularly in neurons that are tonically active. To help fill this gap, pacemaking substantia nigra dopaminergic neurons were studied using a combination of optical, electrophysiological, and molecular approaches. In these neurons, spike-activated calcium (Ca(2+)) entry through Ca(v)1 channels triggered Ca(2+) release from the endoplasmic reticulum, which stimulated mitochondrial oxidative phosphorylation through two complementary Ca(2+)-dependent mechanisms: one mediated by the mitochondrial uniporter and another by the malate-aspartate shuttle. Disrupting either mechanism impaired the ability of dopaminergic neurons to sustain spike activity. While this feedforward control helps dopaminergic neurons meet the bioenergetic demands associated with sustained spiking, it is also responsible for their elevated oxidant stress and possibly to their decline with aging and disease.
format Online
Article
Text
id pubmed-9524841
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-95248412022-10-13 Ca(2+) channels couple spiking to mitochondrial metabolism in substantia nigra dopaminergic neurons Zampese, Enrico Wokosin, David L. Gonzalez-Rodriguez, Patricia Guzman, Jaime N. Tkatch, Tatiana Kondapalli, Jyothisri Surmeier, William C. D’Alessandro, Karis B. De Stefani, Diego Rizzuto, Rosario Iino, Masamitsu Molkentin, Jeffery D. Chandel, Navdeep S. Schumacker, Paul T. Surmeier, D. James Sci Adv Neuroscience How do neurons match generation of adenosine triphosphate by mitochondria to the bioenergetic demands of regenerative activity? Although the subject of speculation, this coupling is still poorly understood, particularly in neurons that are tonically active. To help fill this gap, pacemaking substantia nigra dopaminergic neurons were studied using a combination of optical, electrophysiological, and molecular approaches. In these neurons, spike-activated calcium (Ca(2+)) entry through Ca(v)1 channels triggered Ca(2+) release from the endoplasmic reticulum, which stimulated mitochondrial oxidative phosphorylation through two complementary Ca(2+)-dependent mechanisms: one mediated by the mitochondrial uniporter and another by the malate-aspartate shuttle. Disrupting either mechanism impaired the ability of dopaminergic neurons to sustain spike activity. While this feedforward control helps dopaminergic neurons meet the bioenergetic demands associated with sustained spiking, it is also responsible for their elevated oxidant stress and possibly to their decline with aging and disease. American Association for the Advancement of Science 2022-09-30 /pmc/articles/PMC9524841/ /pubmed/36179023 http://dx.doi.org/10.1126/sciadv.abp8701 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Neuroscience
Zampese, Enrico
Wokosin, David L.
Gonzalez-Rodriguez, Patricia
Guzman, Jaime N.
Tkatch, Tatiana
Kondapalli, Jyothisri
Surmeier, William C.
D’Alessandro, Karis B.
De Stefani, Diego
Rizzuto, Rosario
Iino, Masamitsu
Molkentin, Jeffery D.
Chandel, Navdeep S.
Schumacker, Paul T.
Surmeier, D. James
Ca(2+) channels couple spiking to mitochondrial metabolism in substantia nigra dopaminergic neurons
title Ca(2+) channels couple spiking to mitochondrial metabolism in substantia nigra dopaminergic neurons
title_full Ca(2+) channels couple spiking to mitochondrial metabolism in substantia nigra dopaminergic neurons
title_fullStr Ca(2+) channels couple spiking to mitochondrial metabolism in substantia nigra dopaminergic neurons
title_full_unstemmed Ca(2+) channels couple spiking to mitochondrial metabolism in substantia nigra dopaminergic neurons
title_short Ca(2+) channels couple spiking to mitochondrial metabolism in substantia nigra dopaminergic neurons
title_sort ca(2+) channels couple spiking to mitochondrial metabolism in substantia nigra dopaminergic neurons
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9524841/
https://www.ncbi.nlm.nih.gov/pubmed/36179023
http://dx.doi.org/10.1126/sciadv.abp8701
work_keys_str_mv AT zampeseenrico ca2channelscouplespikingtomitochondrialmetabolisminsubstantianigradopaminergicneurons
AT wokosindavidl ca2channelscouplespikingtomitochondrialmetabolisminsubstantianigradopaminergicneurons
AT gonzalezrodriguezpatricia ca2channelscouplespikingtomitochondrialmetabolisminsubstantianigradopaminergicneurons
AT guzmanjaimen ca2channelscouplespikingtomitochondrialmetabolisminsubstantianigradopaminergicneurons
AT tkatchtatiana ca2channelscouplespikingtomitochondrialmetabolisminsubstantianigradopaminergicneurons
AT kondapallijyothisri ca2channelscouplespikingtomitochondrialmetabolisminsubstantianigradopaminergicneurons
AT surmeierwilliamc ca2channelscouplespikingtomitochondrialmetabolisminsubstantianigradopaminergicneurons
AT dalessandrokarisb ca2channelscouplespikingtomitochondrialmetabolisminsubstantianigradopaminergicneurons
AT destefanidiego ca2channelscouplespikingtomitochondrialmetabolisminsubstantianigradopaminergicneurons
AT rizzutorosario ca2channelscouplespikingtomitochondrialmetabolisminsubstantianigradopaminergicneurons
AT iinomasamitsu ca2channelscouplespikingtomitochondrialmetabolisminsubstantianigradopaminergicneurons
AT molkentinjefferyd ca2channelscouplespikingtomitochondrialmetabolisminsubstantianigradopaminergicneurons
AT chandelnavdeeps ca2channelscouplespikingtomitochondrialmetabolisminsubstantianigradopaminergicneurons
AT schumackerpault ca2channelscouplespikingtomitochondrialmetabolisminsubstantianigradopaminergicneurons
AT surmeierdjames ca2channelscouplespikingtomitochondrialmetabolisminsubstantianigradopaminergicneurons