Cargando…
Alzheimer’s disease related single nucleotide polymorphisms and correlation with intracerebral hemorrhage incidence
Apolipoprotein E alleles have been associated with both Alzheimer’s disease (AD) and intracerebral hemorrhage (ICH). In addition, ICH is associated with a markedly high risk of subsequent dementia compared to other subtypes of stroke. We sought to evaluate if other genetic markers for AD were also a...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9524946/ https://www.ncbi.nlm.nih.gov/pubmed/36181103 http://dx.doi.org/10.1097/MD.0000000000030782 |
Sumario: | Apolipoprotein E alleles have been associated with both Alzheimer’s disease (AD) and intracerebral hemorrhage (ICH). In addition, ICH is associated with a markedly high risk of subsequent dementia compared to other subtypes of stroke. We sought to evaluate if other genetic markers for AD were also associated with ICH. We examined whether published AD risk single nucleotide polymorphisms (SNPs) and haplotypes were associated with ICH utilizing genome-wide association study data from 2 independent studies (genetic and environmental risk factors for hemorrhagic stroke [GERFHS] study and genetics of cerebral hemorrhage with anticoagulation [GOCHA]). Analyses included evaluation by location of ICH. GERFHS and GOCHA cohorts contained 745 ICH cases and 536 controls for analysis. The strongest association was on 1q32 near Complement receptor type 1 (CR1), where rs6701713 was associated with all ICH (P = .0074, odds ratio [OR] = 2.07) and lobar ICH (P = .0073, OR = 2.80). The 51 most significant 2-SNP haplotypes associated with lobar ICH were identified within the Clusterin (CLU) gene. We identified that variation within CR1 and CLU, previously identified risk factors for AD, and are associated with an increased risk for ICH driven primarily by lobar ICH. Previous work implicated CR1 and CLU in cerebral amyloid clearance, the innate immune system, and cellular stress response. |
---|