Cargando…
Hierarchical deep learning for predicting GO annotations by integrating protein knowledge
MOTIVATION: Experimental testing and manual curation are the most precise ways for assigning Gene Ontology (GO) terms describing protein functions. However, they are expensive, time-consuming and cannot cope with the exponential growth of data generated by high-throughput sequencing methods. Hence,...
Autores principales: | Merino, Gabriela A, Saidi, Rabie, Milone, Diego H, Stegmayer, Georgina, Martin, Maria J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9524999/ https://www.ncbi.nlm.nih.gov/pubmed/35929781 http://dx.doi.org/10.1093/bioinformatics/btac536 |
Ejemplares similares
-
Transfer learning: The key to functionally annotate the protein universe
por: Bugnon, Leandro A., et al.
Publicado: (2023) -
Metabolic pathways synthesis based on ant colony optimization
por: Gerard, Matias F., et al.
Publicado: (2018) -
Deep Learning for the discovery of new pre-miRNAs: Helping the fight against COVID-19
por: Bugnon, L.A., et al.
Publicado: (2021) -
Embeddings from deep learning transfer GO annotations beyond homology
por: Littmann, Maria, et al.
Publicado: (2021) -
Effect of sequence padding on the performance of deep learning models in archaeal protein functional prediction
por: Lopez-del Rio, Angela, et al.
Publicado: (2020)