Cargando…

Stitching and registering highly multiplexed whole-slide images of tissues and tumors using ASHLAR

MOTIVATION: Stitching microscope images into a mosaic is an essential step in the analysis and visualization of large biological specimens, particularly human and animal tissues. Recent approaches to highly multiplexed imaging generate high-plex data from sequential rounds of lower-plex imaging. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Muhlich, Jeremy L, Chen, Yu-An, Yapp, Clarence, Russell, Douglas, Santagata, Sandro, Sorger, Peter K
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525007/
https://www.ncbi.nlm.nih.gov/pubmed/35972352
http://dx.doi.org/10.1093/bioinformatics/btac544
Descripción
Sumario:MOTIVATION: Stitching microscope images into a mosaic is an essential step in the analysis and visualization of large biological specimens, particularly human and animal tissues. Recent approaches to highly multiplexed imaging generate high-plex data from sequential rounds of lower-plex imaging. These multiplexed imaging methods promise to yield precise molecular single-cell data and information on cellular neighborhoods and tissue architecture. However, attaining mosaic images with single-cell accuracy requires robust image stitching and image registration capabilities that are not met by existing methods. RESULTS: We describe the development and testing of ASHLAR, a Python tool for coordinated stitching and registration of 10(3) or more individual multiplexed images to generate accurate whole-slide mosaics. ASHLAR reads image formats from most commercial microscopes and slide scanners, and we show that it performs better than existing open-source and commercial software. ASHLAR outputs standard OME-TIFF images that are ready for analysis by other open-source tools and recently developed image analysis pipelines. AVAILABILITY AND IMPLEMENTATION: ASHLAR is written in Python and is available under the MIT license at https://github.com/labsyspharm/ashlar. The newly published data underlying this article are available in Sage Synapse at https://dx.doi.org/10.7303/syn25826362; the availability of other previously published data re-analyzed in this article is described in Supplementary Table S4. An informational website with user guides and test data is available at https://labsyspharm.github.io/ashlar/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.