Cargando…
Prediction of gene co-expression from chromatin contacts with graph attention network
MOTIVATION: The technology of high-throughput chromatin conformation capture (Hi-C) allows genome-wide measurement of chromatin interactions. Several studies have shown statistically significant relationships between gene–gene spatial contacts and their co-expression. It is desirable to uncover epig...
Autores principales: | Zhang, Ke, Wang, Chenxi, Sun, Liping, Zheng, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525008/ https://www.ncbi.nlm.nih.gov/pubmed/35929807 http://dx.doi.org/10.1093/bioinformatics/btac535 |
Ejemplares similares
-
Chromatin interaction–aware gene regulatory modeling with graph attention networks
por: Karbalayghareh, Alireza, et al.
Publicado: (2022) -
sAMPpred-GAT: prediction of antimicrobial peptide by graph attention network and predicted peptide structure
por: Yan, Ke, et al.
Publicado: (2022) -
AFTGAN: prediction of multi-type PPI based on attention free transformer and graph attention network
por: Kang, Yanlei, et al.
Publicado: (2023) -
Gated Graph Attention Network for Cancer Prediction
por: Qiu, Linling, et al.
Publicado: (2021) -
LaGAT: link-aware graph attention network for drug–drug interaction prediction
por: Hong, Yue, et al.
Publicado: (2022)