Cargando…

Computational modeling and quantitative physiology reveal central parameters for brassinosteroid-regulated early cell physiological processes linked to elongation growth of the Arabidopsis root

Brassinosteroids (BR) are key hormonal regulators of plant development. However, whereas the individual components of BR perception and signaling are well characterized experimentally, the question of how they can act and whether they are sufficient to carry out the critical function of cellular elo...

Descripción completa

Detalles Bibliográficos
Autores principales: Großeholz, Ruth, Wanke, Friederike, Rohr, Leander, Glöckner, Nina, Rausch, Luiselotte, Scholl, Stefan, Scacchi, Emanuele, Spazierer, Amelie-Jette, Shabala, Lana, Shabala, Sergey, Schumacher, Karin, Kummer, Ursula, Harter, Klaus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525061/
https://www.ncbi.nlm.nih.gov/pubmed/36069528
http://dx.doi.org/10.7554/eLife.73031
_version_ 1784800627949305856
author Großeholz, Ruth
Wanke, Friederike
Rohr, Leander
Glöckner, Nina
Rausch, Luiselotte
Scholl, Stefan
Scacchi, Emanuele
Spazierer, Amelie-Jette
Shabala, Lana
Shabala, Sergey
Schumacher, Karin
Kummer, Ursula
Harter, Klaus
author_facet Großeholz, Ruth
Wanke, Friederike
Rohr, Leander
Glöckner, Nina
Rausch, Luiselotte
Scholl, Stefan
Scacchi, Emanuele
Spazierer, Amelie-Jette
Shabala, Lana
Shabala, Sergey
Schumacher, Karin
Kummer, Ursula
Harter, Klaus
author_sort Großeholz, Ruth
collection PubMed
description Brassinosteroids (BR) are key hormonal regulators of plant development. However, whereas the individual components of BR perception and signaling are well characterized experimentally, the question of how they can act and whether they are sufficient to carry out the critical function of cellular elongation remains open. Here, we combined computational modeling with quantitative cell physiology to understand the dynamics of the plasma membrane (PM)-localized BR response pathway during the initiation of cellular responses in the epidermis of the Arabidopsis root tip that are be linked to cell elongation. The model, consisting of ordinary differential equations, comprises the BR-induced hyperpolarization of the PM, the acidification of the apoplast and subsequent cell wall swelling. We demonstrate that the competence of the root epidermal cells for the BR response predominantly depends on the amount and activity of H(+)-ATPases in the PM. The model further predicts that an influx of cations is required to compensate for the shift of positive charges caused by the apoplastic acidification. A potassium channel was subsequently identified and experimentally characterized, fulfilling this function. Thus, we established the landscape of components and parameters for physiological processes potentially linked to cell elongation, a central process in plant development.
format Online
Article
Text
id pubmed-9525061
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-95250612022-10-01 Computational modeling and quantitative physiology reveal central parameters for brassinosteroid-regulated early cell physiological processes linked to elongation growth of the Arabidopsis root Großeholz, Ruth Wanke, Friederike Rohr, Leander Glöckner, Nina Rausch, Luiselotte Scholl, Stefan Scacchi, Emanuele Spazierer, Amelie-Jette Shabala, Lana Shabala, Sergey Schumacher, Karin Kummer, Ursula Harter, Klaus eLife Computational and Systems Biology Brassinosteroids (BR) are key hormonal regulators of plant development. However, whereas the individual components of BR perception and signaling are well characterized experimentally, the question of how they can act and whether they are sufficient to carry out the critical function of cellular elongation remains open. Here, we combined computational modeling with quantitative cell physiology to understand the dynamics of the plasma membrane (PM)-localized BR response pathway during the initiation of cellular responses in the epidermis of the Arabidopsis root tip that are be linked to cell elongation. The model, consisting of ordinary differential equations, comprises the BR-induced hyperpolarization of the PM, the acidification of the apoplast and subsequent cell wall swelling. We demonstrate that the competence of the root epidermal cells for the BR response predominantly depends on the amount and activity of H(+)-ATPases in the PM. The model further predicts that an influx of cations is required to compensate for the shift of positive charges caused by the apoplastic acidification. A potassium channel was subsequently identified and experimentally characterized, fulfilling this function. Thus, we established the landscape of components and parameters for physiological processes potentially linked to cell elongation, a central process in plant development. eLife Sciences Publications, Ltd 2022-09-07 /pmc/articles/PMC9525061/ /pubmed/36069528 http://dx.doi.org/10.7554/eLife.73031 Text en © 2022, Großeholz, Wanke et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Computational and Systems Biology
Großeholz, Ruth
Wanke, Friederike
Rohr, Leander
Glöckner, Nina
Rausch, Luiselotte
Scholl, Stefan
Scacchi, Emanuele
Spazierer, Amelie-Jette
Shabala, Lana
Shabala, Sergey
Schumacher, Karin
Kummer, Ursula
Harter, Klaus
Computational modeling and quantitative physiology reveal central parameters for brassinosteroid-regulated early cell physiological processes linked to elongation growth of the Arabidopsis root
title Computational modeling and quantitative physiology reveal central parameters for brassinosteroid-regulated early cell physiological processes linked to elongation growth of the Arabidopsis root
title_full Computational modeling and quantitative physiology reveal central parameters for brassinosteroid-regulated early cell physiological processes linked to elongation growth of the Arabidopsis root
title_fullStr Computational modeling and quantitative physiology reveal central parameters for brassinosteroid-regulated early cell physiological processes linked to elongation growth of the Arabidopsis root
title_full_unstemmed Computational modeling and quantitative physiology reveal central parameters for brassinosteroid-regulated early cell physiological processes linked to elongation growth of the Arabidopsis root
title_short Computational modeling and quantitative physiology reveal central parameters for brassinosteroid-regulated early cell physiological processes linked to elongation growth of the Arabidopsis root
title_sort computational modeling and quantitative physiology reveal central parameters for brassinosteroid-regulated early cell physiological processes linked to elongation growth of the arabidopsis root
topic Computational and Systems Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525061/
https://www.ncbi.nlm.nih.gov/pubmed/36069528
http://dx.doi.org/10.7554/eLife.73031
work_keys_str_mv AT großeholzruth computationalmodelingandquantitativephysiologyrevealcentralparametersforbrassinosteroidregulatedearlycellphysiologicalprocesseslinkedtoelongationgrowthofthearabidopsisroot
AT wankefriederike computationalmodelingandquantitativephysiologyrevealcentralparametersforbrassinosteroidregulatedearlycellphysiologicalprocesseslinkedtoelongationgrowthofthearabidopsisroot
AT rohrleander computationalmodelingandquantitativephysiologyrevealcentralparametersforbrassinosteroidregulatedearlycellphysiologicalprocesseslinkedtoelongationgrowthofthearabidopsisroot
AT glocknernina computationalmodelingandquantitativephysiologyrevealcentralparametersforbrassinosteroidregulatedearlycellphysiologicalprocesseslinkedtoelongationgrowthofthearabidopsisroot
AT rauschluiselotte computationalmodelingandquantitativephysiologyrevealcentralparametersforbrassinosteroidregulatedearlycellphysiologicalprocesseslinkedtoelongationgrowthofthearabidopsisroot
AT schollstefan computationalmodelingandquantitativephysiologyrevealcentralparametersforbrassinosteroidregulatedearlycellphysiologicalprocesseslinkedtoelongationgrowthofthearabidopsisroot
AT scacchiemanuele computationalmodelingandquantitativephysiologyrevealcentralparametersforbrassinosteroidregulatedearlycellphysiologicalprocesseslinkedtoelongationgrowthofthearabidopsisroot
AT spaziererameliejette computationalmodelingandquantitativephysiologyrevealcentralparametersforbrassinosteroidregulatedearlycellphysiologicalprocesseslinkedtoelongationgrowthofthearabidopsisroot
AT shabalalana computationalmodelingandquantitativephysiologyrevealcentralparametersforbrassinosteroidregulatedearlycellphysiologicalprocesseslinkedtoelongationgrowthofthearabidopsisroot
AT shabalasergey computationalmodelingandquantitativephysiologyrevealcentralparametersforbrassinosteroidregulatedearlycellphysiologicalprocesseslinkedtoelongationgrowthofthearabidopsisroot
AT schumacherkarin computationalmodelingandquantitativephysiologyrevealcentralparametersforbrassinosteroidregulatedearlycellphysiologicalprocesseslinkedtoelongationgrowthofthearabidopsisroot
AT kummerursula computationalmodelingandquantitativephysiologyrevealcentralparametersforbrassinosteroidregulatedearlycellphysiologicalprocesseslinkedtoelongationgrowthofthearabidopsisroot
AT harterklaus computationalmodelingandquantitativephysiologyrevealcentralparametersforbrassinosteroidregulatedearlycellphysiologicalprocesseslinkedtoelongationgrowthofthearabidopsisroot