Cargando…
Clinical significance, challenges and limitations in using artificial intelligence for electrocardiography-based diagnosis
Cardiovascular diseases are one of the leading global causes of mortality. Currently, clinicians rely on their own analyses or automated analyses of the electrocardiogram (ECG) to obtain a diagnosis. However, both approaches can only include a finite number of predictors and are unable to execute co...
Autores principales: | Chung, Cheuk To, Lee, Sharen, King, Emma, Liu, Tong, Armoundas, Antonis A., Bazoukis, George, Tse, Gary |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525157/ https://www.ncbi.nlm.nih.gov/pubmed/36212507 http://dx.doi.org/10.1186/s42444-022-00075-x |
Ejemplares similares
-
Machine learning techniques for arrhythmic risk stratification: a review of the literature
por: Chung, Cheuk To, et al.
Publicado: (2022) -
Value of electrocardiography in coronavirus disease 2019 (COVID-19)
por: Haseeb, Sohaib, et al.
Publicado: (2020) -
Artificial Intelligence–Assisted Electrocardiography for Early Diagnosis of Thyrotoxic Periodic Paralysis
por: Lin, Chin, et al.
Publicado: (2021) -
Artificial intelligence using electrocardiography: strengths and pitfalls
por: Kwon, Joon-myoung, et al.
Publicado: (2021) -
Current and Future Use of Artificial Intelligence in Electrocardiography
por: Martínez-Sellés, Manuel, et al.
Publicado: (2023)