Cargando…
Using linear parameter varying autoregressive models to measure cross frequency couplings in EEG signals
For years now, phase-amplitude cross frequency coupling (CFC) has been observed across multiple brain regions under different physiological and pathological conditions. It has been suggested that CFC serves as a mechanism that facilitates communication and information transfer between local and spat...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525181/ https://www.ncbi.nlm.nih.gov/pubmed/36188180 http://dx.doi.org/10.3389/fnhum.2022.915815 |
Sumario: | For years now, phase-amplitude cross frequency coupling (CFC) has been observed across multiple brain regions under different physiological and pathological conditions. It has been suggested that CFC serves as a mechanism that facilitates communication and information transfer between local and spatially separated neuronal populations. In non-invasive brain computer interfaces (BCI), CFC has not been thoroughly explored. In this work, we propose a CFC estimation method based on Linear Parameter Varying Autoregressive (LPV-AR) models and we assess its performance using both synthetic data and electroencephalographic (EEG) data recorded during attempted arm/hand movements of spinal cord injured (SCI) participants. Our results corroborate the potentiality of CFC as a feature for movement attempt decoding and provide evidence of the superiority of our proposed CFC estimation approach compared to other commonly used techniques. |
---|