Cargando…
Improving Node Classification through Convolutional Networks Built on Enhanced Message-Passing Graph
Enhancing message propagation is critical for solving the problem of node classification in sparse graph with few labels. The recently popularized Graph Convolutional Network (GCN) lacks the ability to propagate messages effectively to distant nodes because of over-smoothing. Besides, the GCN with n...
Autores principales: | Song, Yu, Lu, Shan, Qiu, Dehong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525199/ https://www.ncbi.nlm.nih.gov/pubmed/36188690 http://dx.doi.org/10.1155/2022/3999144 |
Ejemplares similares
-
Path-enhanced graph convolutional networks for node classification without features
por: Jiao, Qingju, et al.
Publicado: (2023) -
Attention-based message passing and dynamic graph convolution for spatiotemporal data imputation
por: Wang, Yifan, et al.
Publicado: (2023) -
Drug Repositioning Based on the Enhanced Message Passing and Hypergraph Convolutional Networks
por: Huang, Weihong, et al.
Publicado: (2022) -
Author Correction: Attention-based message passing and dynamic graph convolution for spatiotemporal data imputation
por: Wang, Yifan, et al.
Publicado: (2023) -
Node Classification in Complex Social Graphs via Knowledge-Graph Embeddings and Convolutional Neural Network
por: Molokwu, Bonaventure C., et al.
Publicado: (2020)