Cargando…

Dimethyl sulfoxide-free cryopreservation solution containing trehalose, dextran 40, and propylene glycol for therapy with human adipose tissue-derived mesenchymal stromal cells

We evaluated a dimethyl sulfoxide (Me2SO)-free cryopreservation solution to freeze human adipose-derived mesenchymal stromal cells (hADSCs). In the first experiment, we compared the combined effects of 3% trehalose (3 T) and 5% dextran (5D) in lactated Ringer’s solution (LR) as a cryopreservation ba...

Descripción completa

Detalles Bibliográficos
Autores principales: Fujita, Yasutaka, Nishimura, Masuhiro, Wada, Tamaki, Komori, Natsuki, Otoi, Takeshige
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525547/
https://www.ncbi.nlm.nih.gov/pubmed/36238270
http://dx.doi.org/10.1007/s10616-022-00541-3
Descripción
Sumario:We evaluated a dimethyl sulfoxide (Me2SO)-free cryopreservation solution to freeze human adipose-derived mesenchymal stromal cells (hADSCs). In the first experiment, we compared the combined effects of 3% trehalose (3 T) and 5% dextran (5D) in lactated Ringer’s solution (LR) as a cryopreservation base solution containing 10% propylene glycol (PG). The cell viability of hADSCs immediately after thawing was significantly higher (p < 0.05) in LR supplemented with 3 T (LR-3 T) and with 3 T and 5D (LR-3 T-5D) than in LR. In the second experiment, we compared the cell characteristics of hADSCs freeze-thawed in LR-3 T-5D containing either 10% Me2SO or 10% PG. The cell viability, annexin V-positive ratio, colony-forming capacity, cell proliferation, cell surface antigen positivity, adipogenic differentiation, osteogenic differentiation, and genetic response to cytokine stimulation of hADSCs immediately after thawing were similar between the LR-3 T-5D containing 10% Me2SO and 10% PG. In the third experiment, we examined various concentrations of PG on the cell proliferative capacity of freeze-thawed hADSCs. The cell proliferative capacity of hADSCs frozen with LR-3 T-5D containing 2.5% to 5% PG was significantly higher (p < 0.05) than LR-3 T-5D containing 10% PG. Furthermore, the cell proliferative capacity of hADSCs frozen with LR-3 T-5D containing 4% PG was similar to that of fresh hADSCs. These results indicate that the combination of 3 T-5D in an LR solution as a basic solution is effective for post-thaw cell viability, and that the optimal concentration of PG to maintain the cell characteristics of hADSCs frozen with LR-3 T-5D is 2.5% to 5%, which is promising for cell therapy applications.