Cargando…

Development of a duplex qPCR assay with locked nucleic acid probes for A, B and E kappa-casein variants detection

Milk proteins determine important milk technological characteristics. Among caseins, Ƙ-casein has been correlated with fat and protein content and cheese yield. Fourteen Ƙ-caseins variants have been described but the alleles A, B and E are the most important ones due to their frequency and/or influe...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiménez-Montenegro, L., Mendizabal, J. A., Alfonso, L., Azparren, L., Urrutia, O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525573/
https://www.ncbi.nlm.nih.gov/pubmed/36180500
http://dx.doi.org/10.1038/s41598-022-20586-w
Descripción
Sumario:Milk proteins determine important milk technological characteristics. Among caseins, Ƙ-casein has been correlated with fat and protein content and cheese yield. Fourteen Ƙ-caseins variants have been described but the alleles A, B and E are the most important ones due to their frequency and/or influence on the technological aptitudes of milk. Therefore, in the present study two different duplex qPCR assays with locked nucleic acid probes (for positions 13104 and 13124 of the Ƙ-casein gene) were developed for the detection of A, B and E variants. Firstly, DNA isolation method from milk somatic cells and hair was optimised. The developed 13124-qPCR assay showed an increased sensitivity reaching up to 6.7 copies DNA copies/reaction at a 95% confidence level with A, B and E alleles reference samples. The 13104-qPCR assay reached up to 6.7 DNA copies/reaction for A allele reference sample and 67 DNA copies/reaction for B and E samples. Intra-assay variation results were below 6%. Applicability was determined using DNA samples from animals with known genotype for Ƙ-casein (AA, AB, BB, BE, AE, EE) and both assays were able to discriminate among the six genotypes with 100% accuracy. Thus, this qPCR method represents a sensitive and rapid option for the detection of Ƙ-casein alleles in both hair and milk samples.