Cargando…

Heteroployacid on the composite of boehmite and polyionic liquid as a catalyst for alcohol oxidation and tandem alcohol oxidation Knoevenagel condensation reactions

Using boehmite as an available and low-cost natural compound, a bi-functional catalytic composite is prepared through vinyl-functionalization of boehmite, followed by polymerization with the as-prepared bis-vinylimidazolium bromide ionic liquid and supporting of phosphotungstic acid. The catalyst wa...

Descripción completa

Detalles Bibliográficos
Autores principales: Abedian-Dehaghani, Neda, Sadjadi, Samahe, Heravi, Majid M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525677/
https://www.ncbi.nlm.nih.gov/pubmed/36180555
http://dx.doi.org/10.1038/s41598-022-20699-2
Descripción
Sumario:Using boehmite as an available and low-cost natural compound, a bi-functional catalytic composite is prepared through vinyl-functionalization of boehmite, followed by polymerization with the as-prepared bis-vinylimidazolium bromide ionic liquid and supporting of phosphotungstic acid. The catalyst was characterized via ICP, XRD, TGA, FTIR, SEM/EDS and elemental mapping analysis and applied for promoting alcohol oxidation reaction and one-pot tandem alcohol oxidation/Knoevenagel condensation reaction in aqueous media under mild reaction condition. The results indicated high catalytic activity of the catalyst for both reactions. This protocol showed high generality and aliphatic, aromatic and heterocyclic alcohols could be applied as substrates to furnish the corresponding products in high to excellent yields. Furthermore, hot filtration test confirmed true heterogeneous nature of the catalysis. The catalyst could also be recovered readily and reused for at least five runs of the reaction with low loss of the activity and phosphotungstic acid leaching upon each run.