Cargando…
Addressing racial disparities in surgical care with machine learning
There is ample evidence to demonstrate that discrimination against several population subgroups interferes with their ability to receive optimal surgical care. This bias can take many forms, including limited access to medical services, poor quality of care, and inadequate insurance coverage. While...
Autores principales: | Halamka, John, Bydon, Mohamad, Cerrato, Paul, Bhagra, Anjali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525720/ https://www.ncbi.nlm.nih.gov/pubmed/36180724 http://dx.doi.org/10.1038/s41746-022-00695-6 |
Ejemplares similares
-
Redesigning COVID-19 Care With Network Medicine and Machine Learning
por: Halamka, John, et al.
Publicado: (2020) -
Addressing racial bias in wards
por: Tsai, Jennifer, et al.
Publicado: (2018) -
Understanding and Addressing Racial Disparities in Health Care
por: Williams, David R., et al.
Publicado: (2000) -
Invited Perspective: Moving from Characterizing to Addressing Racial/Ethnic Disparities in Air Pollution Exposure
por: Levy, Jonathan I.
Publicado: (2021) -
Machine learning in medicine: Addressing ethical challenges
por: Vayena, Effy, et al.
Publicado: (2018)