Cargando…
A synchronized multimodal neuroimaging dataset for studying brain language processing
We present a synchronized multimodal neuroimaging dataset for studying brain language processing (SMN4Lang) that contains functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) data on the same 12 healthy volunteers while the volunteers listened to 6 hours of naturalistic stor...
Autores principales: | Wang, Shaonan, Zhang, Xiaohan, Zhang, Jiajun, Zong, Chengqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525723/ https://www.ncbi.nlm.nih.gov/pubmed/36180444 http://dx.doi.org/10.1038/s41597-022-01708-5 |
Ejemplares similares
-
An fMRI Dataset for Concept Representation with Semantic Feature Annotations
por: Wang, Shaonan, et al.
Publicado: (2022) -
A 204-subject multimodal neuroimaging dataset to study language processing
por: Schoffelen, Jan-Mathijs, et al.
Publicado: (2019) -
A large dataset of semantic ratings and its computational extension
por: Wang, Shaonan, et al.
Publicado: (2023) -
A longitudinal multi-scanner multimodal human neuroimaging dataset
por: Hawco, Colin, et al.
Publicado: (2022) -
A longitudinal neuroimaging dataset on language processing in children ages 5, 7, and 9 years old
por: Wang, Jin, et al.
Publicado: (2022)