Cargando…
Artificial intelligence in oncologic imaging
Radiology is integral to cancer care. Compared to molecular assays, imaging has its advantages. Imaging as a noninvasive tool can assess the entirety of tumor unbiased by sampling error and is routinely acquired at multiple time points in oncological practice. Imaging data can be digitally post-proc...
Autores principales: | Chen, Melissa M., Terzic, Admir, Becker, Anton S., Johnson, Jason M., Wu, Carol C., Wintermark, Max, Wald, Christoph, Wu, Jia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525817/ https://www.ncbi.nlm.nih.gov/pubmed/36193451 http://dx.doi.org/10.1016/j.ejro.2022.100441 |
Ejemplares similares
-
Artificial intelligence and imaging: Opportunities in cardio-oncology
por: Madan, Nidhi, et al.
Publicado: (2022) -
Artificial intelligence in oncology
por: Shimizu, Hideyuki, et al.
Publicado: (2020) -
Corrigendum to Artificial Intelligence in the Era of Precision
Oncological Imaging
Publicado: (2023) -
Artificial Intelligence in CT and MR Imaging for Oncological Applications
por: Paudyal, Ramesh, et al.
Publicado: (2023) -
Artificial intelligence in medical imaging of the liver
por: Zhou, Li-Qiang, et al.
Publicado: (2019)