Cargando…
Empirical validation of ELM trained neural networks for financial modelling
The purpose of this work is to compare predictive performance of neural networks trained using the relatively novel technique of training single hidden layer feedforward neural networks (SFNN), called Extreme Learning Machine (ELM), with commonly used backpropagation-trained recurrent neural network...
Autores principales: | Novykov, Volodymyr, Bilson, Christopher, Gepp, Adrian, Harris, Geoff, Vanstone, Bruce James |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525949/ https://www.ncbi.nlm.nih.gov/pubmed/36212216 http://dx.doi.org/10.1007/s00521-022-07792-3 |
Ejemplares similares
-
Investigating healthcare contacts of Dialysis patients by age and gender
por: Todd, James, et al.
Publicado: (2019) -
Empirical Analysis of Financial Depth and Width Based on Convolutional Neural Network
por: Ye, Mengqi, et al.
Publicado: (2021) -
Why elm?
por: Griffith, Matthew
Publicado: (2017) -
Elm in Action
por: Feldman, Richard
Publicado: (2020) -
Programming Elm
por: Fairbank, Jeremy
Publicado: (2019)