Cargando…
Automatically Identifying Twitter Users for Interventions to Support Dementia Family Caregivers: Annotated Data Set and Benchmark Classification Models
BACKGROUND: More than 6 million people in the United States have Alzheimer disease and related dementias, receiving help from more than 11 million family or other informal caregivers. A range of traditional interventions has been developed to support family caregivers; however, most of them have not...
Autores principales: | Klein, Ari Z, Magge, Arjun, O'Connor, Karen, Gonzalez-Hernandez, Graciela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9526111/ https://www.ncbi.nlm.nih.gov/pubmed/36112408 http://dx.doi.org/10.2196/39547 |
Ejemplares similares
-
ReportAGE: Automatically extracting the exact age of Twitter users based on self-reports in tweets
por: Klein, Ari Z., et al.
Publicado: (2022) -
Automatically Identifying Self-Reports of COVID-19 Diagnosis on Twitter: An Annotated Data Set, Deep Neural Network Classifiers, and a Large-Scale Cohort
por: Klein, Ari Z, et al.
Publicado: (2023) -
Toward Using Twitter for Tracking COVID-19: A Natural Language Processing Pipeline and Exploratory Data Set
por: Klein, Ari Z, et al.
Publicado: (2021) -
A Chronological and Geographical Analysis of Personal Reports of COVID-19 on Twitter
por: Klein, Ari Z., et al.
Publicado: (2020) -
Extending A Chronological and Geographical Analysis of Personal Reports of COVID-19 on Twitter to England, UK
por: Golder, S, et al.
Publicado: (2020)