Cargando…
Retaining a large amount of resistant starch in cooked potato through microwave heating after freeze-drying
Resistant starch (RS) is beneficial for humans, especially for the diabetes. Raw potato had a great deal of RS, while most of which become digestible after gelatinization. Thus, few RS will be retained in potatoes after regular cooking. To preserve RS in cooked potatoes as much as possible, microwav...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9526131/ https://www.ncbi.nlm.nih.gov/pubmed/36193039 http://dx.doi.org/10.1016/j.crfs.2022.09.023 |
Sumario: | Resistant starch (RS) is beneficial for humans, especially for the diabetes. Raw potato had a great deal of RS, while most of which become digestible after gelatinization. Thus, few RS will be retained in potatoes after regular cooking. To preserve RS in cooked potatoes as much as possible, microwave heating before (MFD) and after freeze-drying (FDM) were conducted with three different potatoes. After MFD, the RS content in potatoes was lower than 7% and the RDS content was higher than 45% for three potatoes. However, RS in potatoes treated with FDM was still as high as 40%, similar to that in the raw potatoes. Meantime, FDM caused less browning, produced a certain level of pyrazines, benzeneacetaldehyde and other flavor compounds, endowing cooked potatoes special baked flavor. Freeze-drying before microwave heating is a valuable way to reserve RS in cooked potatoes, which could also be used to reserve high RS content in crisp, chips, and other processed potatoes. |
---|