Cargando…

PCSK9 is minimally associated with HDL but impairs the anti-atherosclerotic HDL effects on endothelial cell activation

Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) regulates the cell-surface localization of LDL receptors in hepatocytes and is associated with LDL and lipoprotein(a) [Lp(a)] uptake, reducing blood concentrations. However, the connection between PCSK9 and HDL is unclear. Here, we investigated t...

Descripción completa

Detalles Bibliográficos
Autores principales: Dafnis, Ioannis, Tsouka, Aikaterini N., Gkolfinopoulou, Christina, Tellis, Constantinos C., Chroni, Angeliki, Tselepis, Alexandros D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9526147/
https://www.ncbi.nlm.nih.gov/pubmed/36067830
http://dx.doi.org/10.1016/j.jlr.2022.100272
Descripción
Sumario:Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) regulates the cell-surface localization of LDL receptors in hepatocytes and is associated with LDL and lipoprotein(a) [Lp(a)] uptake, reducing blood concentrations. However, the connection between PCSK9 and HDL is unclear. Here, we investigated the association of plasma PCSK9 with HDL subpopulations and examined the effects of PCSK9 on the atheroprotective function of HDL. We examined the association of PCSK9 with HDL in apoB-depleted plasma by ELISA, native PAGE, and immunoblotting. Our analyses showed that upon apoB-depletion, total circulating PCSK9 levels were 32% of those observed in normolipidemic plasma, and only 6% of PCSK9 in the apoB-depleted plasma, including both the mature and furin-cleaved forms, was associated with HDL. We also show human recombinant PCSK9 abolished the capacity of reconstituted HDL to reduce the formation of ROS in endothelial cells, while a PCSK9-blocking antibody enhanced the capacity of human HDL (in apoB-depleted plasma) to reduce ROS formation in endothelial cells and promote endothelial cell migration. Overall, our findings suggest that PCSK9 is only minimally associated with HDL particles, but PCSK9 in apoB-depleted plasma can affect the atheroprotective properties of HDL related to preservation of endothelial function. This study contributes to the elucidation of the pathophysiological role of plasma PCSK9 and highlights further the anti-atherosclerotic effect of PCSK9 inhibition.